Skip to main content
Log in

Conserved motif CMLD in silicic acid transport proteins of diatoms

  • Molecular Mechanisms of Biological Processes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Sequenced fragments of genes coding for silicon transporters (SITs) were analyzed for diatoms of evolutionarily distant classes (centric Chaetoceros muelleri Lemmermann, pennate araphid Synedra acus Kützing, pennate raphid Phaeodactylum tricornutum Bohlin, and pennate Cylindrotheca fusiformis Reimann et Lewin with a keeled raphe system). SITs were found to contain a conserved motif, CMLD. Hydropathy profiles showed that the motif CMLD is between two transmembrane domains lacking Lys and Arg, and the domains were consequently assumed to play a role in the formation of a channel mediating silicic acid transport. The motif CMLD proved to be rare. Since Zn2+ is necessary for silica incorporation into diatom cells, a hypothesis was advanced that the motif CMLD acts as a Zn-binding site. Diatom growth suppression was observed in the presence of the alkylating agent N-iodoacetylamidoethyl-1-aminonaphthalene-5-sulfonic acid (AEDANS), which does not penetrate into the cell. Cys of the motif CMLD was assumed to act as a target for AEDANS. Zinc ions inhibited Cys alkylation in the synthetic peptide NCMLDY, testifying to the above hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Nelson D.M., Treguer P., Brzezinski M.A., Leynaert A., Queguiner B. 1995. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycles. 9, 353–365.

    Article  Google Scholar 

  2. Field C.B., Behrenfeld M.J., Randerson J.T., Falkowski P. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science. 281, 237–240.

    Article  CAS  PubMed  Google Scholar 

  3. Kooistra W.H.C.F, Medlin L.K. 1996. Evolution of the Diatoms (Bacillariophyta): 4. Reconstruction of their age from ssu rRNA coding regions and the fossil records. Mol. Phyl. Evol. 6, 391–407.

    Article  CAS  Google Scholar 

  4. Round F.E. 1996. What characters define diatom genera, species and intraspecific taxa. Diatom. Res. 11, 203–218.

    Google Scholar 

  5. Mann D.G. 1999. The species concept in diatoms. Phycologia. 38, 437–495.

    Google Scholar 

  6. Hildebrand M., Volcani B.E., Gassmann W., Schroeder J.I. 1997. A gene family of silicon transporters. Nature. 385, 688–689.

    Article  CAS  PubMed  Google Scholar 

  7. Hildebrand M., Dahlin K., Volcani B.E. 1998. Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: Sequences, expression analysis, and identification of homologs in other diatoms. Mol. Gen. Genet. 260, 480–486.

    Article  CAS  PubMed  Google Scholar 

  8. Grachev M.A., Denikona N.N., Belikov S.I., Likhoshway E.V., Usoltseva M.V., Tikhonova I.V., Adelshin R.V., Kler S.A., Sherbakova T.A. 2002. Elements of the active center of silicic acid transport proteins in diatoms. Mol. Biol. 36, 679–681.

    Article  CAS  Google Scholar 

  9. Voronkov M.G., Kuznetsov I.G. 1983. Udivitel’nyi element zhizni (A Wonderful Element of Life), Irkutsk: Vostochno-Sibirskoe Knizhnoe Izd.

    Google Scholar 

  10. Silicon and Siliceous Structures in Biological Systems. Eds. Simpson T.L., Volcani E.V. 1981. N.Y.: Springer.

    Google Scholar 

  11. Silicon Biomineralization. Biology, Biochemistry, Molecular Biology, Biotechnology. Ed. Muller W.E.G. 2003. Progress in Molecular and Subcellular Biology. vol. 33. Berlin: Springer.

  12. Doyle J.J., Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus. 12, 13–15.

    Google Scholar 

  13. Hall T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98. Nucl. Acids Sym. Ser. 41, 95–98.

    CAS  Google Scholar 

  14. Kumar S., Tamura K., Jakobsen I.B., Nei M. 2001. MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics. 17, 1244–1245.

    Article  CAS  PubMed  Google Scholar 

  15. Guillard R.R.L., Ryther J.H. 1962. Studies of marine planktonic diatoms: 1. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, no.2, 229–239.

    CAS  PubMed  Google Scholar 

  16. Catalogue of Strains. Eds. Thompson A.S., Rhodes J.C., Pettman I. 1988. In: Culture Collections of Algae and Protozoa. Kendal: Titus Wilson & Son.

  17. Scala S., Carels N., Falciatore A., Chiusano M.L., Bowler C. 2002. Genome properties of the diatom Phaeodactylum tricornutum. Plant Physiol. 129, 993–1002.

    CAS  PubMed  Google Scholar 

  18. Sorhannus U., Fox M. 1999. Synonymous and nonsynonymous substitution rates in diatoms: A comparison between chloroplast and nuclear genes. J. Mol. Evol. 48, 209–212.

    CAS  PubMed  Google Scholar 

  19. Medlin L.K., Kooistra W., Gresonde R., Wellbroc U. 1996. Evolution of the diatoms (Bacillariophyta): 2. Nuclear-encoded small subunit rRNA sequence comparisons confirm a paraphyletic origin for the centric diatoms. Mol. Biol. Evol. 13, 67–75.

    CAS  PubMed  Google Scholar 

  20. Kooistra W.H.C.F., Medlin L.K. 1996. Evolution of the diatoms (Bacillariophyta): 4. A reconstruction of their age from small subunit rRNA coding regions and the fossil record. Mol. Phyl. Evol. 6, 391–407.

    Article  CAS  Google Scholar 

  21. Li W.-H. 1997. Molecular Evolution. Saunderland, Mass.: Sinauer Assoc.

    Google Scholar 

  22. Rueter J., Chisholm S., Morel F. 1981. Effects of copper toxicity on silicic acid uptake and growth in Thalassiosira pseudonana. J. Phycol. 17, 270–278.

    CAS  Google Scholar 

  23. Claquin P., Martin-Jezequel V., Kromkamp J., Veldhuis M., Kraay G. 2002. Uncoupling of silicon compared to carbon and nitrogen metabolisms, and role of the cell cycle, in continuous cultures of Thalassiosira pseudonana. J. Phycol. 38, 922–930.

    CAS  Google Scholar 

  24. Hildebrand M. 2002. Lack of coupling between silicon and other elemental metabolisms in diatoms. J. Phycol. 38, 841–843.

    Google Scholar 

  25. Kröger N., Deutzmann R., Sumper M. 1999. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science. 286, 1129–1132.

    PubMed  Google Scholar 

  26. Hudson E.N., Weber G. 1973. Synthesis and characterization of two fluorescent sulfhydryl reagents. Biochemistry. 12, 4154–4161.

    CAS  PubMed  Google Scholar 

  27. Martin-Jezequel V., Hildebrand M., Brzezinski M. 2000. Silicon metabolism in diatoms: Implication for growth. J. Phycol. 36, 821–840.

    CAS  Google Scholar 

  28. Marshall C.E. 1964. The physical chemistry and mineralogy of soils. In: Soil Materials. N.Y.: Wiley.

    Google Scholar 

  29. Krauskopf K.B. 1956. Dissolution and precipitation of silica at low temperatures. Geochim. Cosmochim. Acta. 46, 1–26.

    Google Scholar 

  30. Anderson M.A., F.M., Guillard R.R. 1978. Growth limitation of a coastal diatom by low zinc ion activity. Nature. 276, 70–71.

    CAS  Google Scholar 

  31. Rueter J.G, Jr., Morel F.M.M. 1981. The interaction between zinc deficiency and copper toxicity as it affects the silicic acid uptake mechanisms in Thalassiosira pseudonana. Limnol. Oceanogr. 26, 67–73.

    CAS  Google Scholar 

  32. Kiefer L.L., Fierke C.A. 1994. Functional characterization of human carbonic anhydrase II variants with altered zinc binding sites. Biochemistry. 33, 15233–15240.

    CAS  PubMed  Google Scholar 

  33. Schröder H.C., Krasko A., Pennec G.L., Adell T., Wiens M., Hassanein H., Müller I., Mü ller W. 2003. Silicase, an enzyme which degrades biogenous amorphous silica: Contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. In: Silicon Biomineralization. Biology, Biochemistry, Molecular Biology, Biotechnology. Ed. Muller W.E.G. (Progress in Molecular and Subcellular Biology, vol. 33). Berlin: Springer, pp. 249–268.

    Google Scholar 

  34. Berry E., Zhang Z., Bellamy H., Huang L. 2000. Crystallographic location of two Zn2+-binding sites in the avian cytochrome bc1 complex. Biochim. Biophys. Acta. 1459, 440–448.

    CAS  PubMed  Google Scholar 

  35. Sullivan C.W. 1979. Diatom mineralization of silicic acid: 4. Kinetics of soluble Si pool formation in exponentially growing and synchronized Navicula pelliculosa. J. Phycol. 15, 210–216.

    CAS  Google Scholar 

  36. Alexander G.B., Heston W.M., Iler R.K. 1954. The solubility of amorphous silica in water. J. Phys. Chem. 58, 435–455.

    Google Scholar 

  37. Drum R.W., Pankratz H.S. 1964. Postmitotic fine structure of Gomphonema parvulum. J. Ultrastruct. Res. 10, 217–223.

    CAS  PubMed  Google Scholar 

  38. Reimann B.E.F., Lewin J.C., Volcani B.E. 1965. Studies on biochemistry and fine structure of silica shell formation in diatoms: 1. The structure of the cell wall of Cylindrotheca fusiformis Reimann and Lewin. J. Cell Biol. 24, 39–55.

    CAS  PubMed  Google Scholar 

  39. Reimann B.E.F., Lewin J.C., Volcani B.E. 1966. Studies on biochemistry and fine structure of silica shell formation in diatoms: 2. The structure of the cell wall of Navicula pelliculosa (Breb.) Hilse. J. Phycol. 2, 74–84.

    Google Scholar 

  40. Round F.E., Crawford R.M., Mann D.G. 1990. The Diatoms. Biology and Morphology of the Genera. Cambridge: Cambridge Univ. Press.

    Google Scholar 

  41. Schmid A.M., Schutz D. 1979. Wall morphogenesis in diatoms: Deposition of silica by cytoplasmic vesicles. Protoplasma. 100, 267–288.

    Google Scholar 

  42. Gordon R., Drum R.W. 1994. The chemical basis of diatom morphogenesis. Int. Rev. Cytol. 150, 243–372.

    CAS  Google Scholar 

  43. Pickett-Heaps J., Schmid A.M., Edgar L.A. 1990. The cell biology of diatom valve formation. In: Progress in Phycological Research, vol. 7. Eds. Round F.E., Chapman D.J. Bristol: Biopress, pp. 1–168.

    Google Scholar 

  44. Parkinson J., Brechek Y., Gordon R. 1999. Centric diatom morphogenesis: A model based on DLA algorithm investigating the potential role of microtubules. Biochim. Biophys. Acta. 1452, 89–102.

    CAS  PubMed  Google Scholar 

  45. Hildebrand M., Wetherbee R. 2003. Components and control of silicification in diatoms. In: Silicon Biomineralization. Biology, Biochemistry, Molecular Biology, Biotechnology. Ed. Müller W.E.G. (Progress in Molecular and Subcellular Biology, vol. 33). Berlin: Springer, pp. 11–57.

    Google Scholar 

  46. Kröger N., Deutzmann R., Bergsdorf C., Sumper M. 2000. Species-specific polyamines from diatoms: Control of silica morphology. Proc. Natl. Acad. Sci. USA. 97, 14133–14138.

    PubMed  Google Scholar 

  47. Swift D.M., Wheeler A.P. 1992. Evidence of an organic matrix from diatom biosilica. J. Phycol. 28, 202–209.

    CAS  Google Scholar 

  48. Vreiling E.G., Beelen T.P.M., van Santen R.A., Gieskes W.W.C. 1999. Diatom silica biomineralization as an inspirational source of new approaches to silica production. J. Biotechnol. 70, 39–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 2, 2005, pp. 303–316.

Original Russian Text Copyright © 2005 by Sherbakova, Masyukova, Safonova, Petrova, Vereshagin, Minaeva, Adelshin, Triboy, Stonik, Aizdaitcher, Kozlov, Likhoshway, Grachev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherbakova, T.A., Masyukova, Y.A., Safonova, T.A. et al. Conserved motif CMLD in silicic acid transport proteins of diatoms. Mol Biol 39, 269–280 (2005). https://doi.org/10.1007/s11008-005-0038-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0038-4

Key words

Navigation