Abstract
Sequenced fragments of genes coding for silicon transporters (SITs) were analyzed for diatoms of evolutionarily distant classes (centric Chaetoceros muelleri Lemmermann, pennate araphid Synedra acus Kützing, pennate raphid Phaeodactylum tricornutum Bohlin, and pennate Cylindrotheca fusiformis Reimann et Lewin with a keeled raphe system). SITs were found to contain a conserved motif, CMLD. Hydropathy profiles showed that the motif CMLD is between two transmembrane domains lacking Lys and Arg, and the domains were consequently assumed to play a role in the formation of a channel mediating silicic acid transport. The motif CMLD proved to be rare. Since Zn2+ is necessary for silica incorporation into diatom cells, a hypothesis was advanced that the motif CMLD acts as a Zn-binding site. Diatom growth suppression was observed in the presence of the alkylating agent N-iodoacetylamidoethyl-1-aminonaphthalene-5-sulfonic acid (AEDANS), which does not penetrate into the cell. Cys of the motif CMLD was assumed to act as a target for AEDANS. Zinc ions inhibited Cys alkylation in the synthetic peptide NCMLDY, testifying to the above hypothesis.
Similar content being viewed by others
REFERENCES
Nelson D.M., Treguer P., Brzezinski M.A., Leynaert A., Queguiner B. 1995. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cycles. 9, 353–365.
Field C.B., Behrenfeld M.J., Randerson J.T., Falkowski P. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science. 281, 237–240.
Kooistra W.H.C.F, Medlin L.K. 1996. Evolution of the Diatoms (Bacillariophyta): 4. Reconstruction of their age from ssu rRNA coding regions and the fossil records. Mol. Phyl. Evol. 6, 391–407.
Round F.E. 1996. What characters define diatom genera, species and intraspecific taxa. Diatom. Res. 11, 203–218.
Mann D.G. 1999. The species concept in diatoms. Phycologia. 38, 437–495.
Hildebrand M., Volcani B.E., Gassmann W., Schroeder J.I. 1997. A gene family of silicon transporters. Nature. 385, 688–689.
Hildebrand M., Dahlin K., Volcani B.E. 1998. Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: Sequences, expression analysis, and identification of homologs in other diatoms. Mol. Gen. Genet. 260, 480–486.
Grachev M.A., Denikona N.N., Belikov S.I., Likhoshway E.V., Usoltseva M.V., Tikhonova I.V., Adelshin R.V., Kler S.A., Sherbakova T.A. 2002. Elements of the active center of silicic acid transport proteins in diatoms. Mol. Biol. 36, 679–681.
Voronkov M.G., Kuznetsov I.G. 1983. Udivitel’nyi element zhizni (A Wonderful Element of Life), Irkutsk: Vostochno-Sibirskoe Knizhnoe Izd.
Silicon and Siliceous Structures in Biological Systems. Eds. Simpson T.L., Volcani E.V. 1981. N.Y.: Springer.
Silicon Biomineralization. Biology, Biochemistry, Molecular Biology, Biotechnology. Ed. Muller W.E.G. 2003. Progress in Molecular and Subcellular Biology. vol. 33. Berlin: Springer.
Doyle J.J., Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus. 12, 13–15.
Hall T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98. Nucl. Acids Sym. Ser. 41, 95–98.
Kumar S., Tamura K., Jakobsen I.B., Nei M. 2001. MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics. 17, 1244–1245.
Guillard R.R.L., Ryther J.H. 1962. Studies of marine planktonic diatoms: 1. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, no.2, 229–239.
Catalogue of Strains. Eds. Thompson A.S., Rhodes J.C., Pettman I. 1988. In: Culture Collections of Algae and Protozoa. Kendal: Titus Wilson & Son.
Scala S., Carels N., Falciatore A., Chiusano M.L., Bowler C. 2002. Genome properties of the diatom Phaeodactylum tricornutum. Plant Physiol. 129, 993–1002.
Sorhannus U., Fox M. 1999. Synonymous and nonsynonymous substitution rates in diatoms: A comparison between chloroplast and nuclear genes. J. Mol. Evol. 48, 209–212.
Medlin L.K., Kooistra W., Gresonde R., Wellbroc U. 1996. Evolution of the diatoms (Bacillariophyta): 2. Nuclear-encoded small subunit rRNA sequence comparisons confirm a paraphyletic origin for the centric diatoms. Mol. Biol. Evol. 13, 67–75.
Kooistra W.H.C.F., Medlin L.K. 1996. Evolution of the diatoms (Bacillariophyta): 4. A reconstruction of their age from small subunit rRNA coding regions and the fossil record. Mol. Phyl. Evol. 6, 391–407.
Li W.-H. 1997. Molecular Evolution. Saunderland, Mass.: Sinauer Assoc.
Rueter J., Chisholm S., Morel F. 1981. Effects of copper toxicity on silicic acid uptake and growth in Thalassiosira pseudonana. J. Phycol. 17, 270–278.
Claquin P., Martin-Jezequel V., Kromkamp J., Veldhuis M., Kraay G. 2002. Uncoupling of silicon compared to carbon and nitrogen metabolisms, and role of the cell cycle, in continuous cultures of Thalassiosira pseudonana. J. Phycol. 38, 922–930.
Hildebrand M. 2002. Lack of coupling between silicon and other elemental metabolisms in diatoms. J. Phycol. 38, 841–843.
Kröger N., Deutzmann R., Sumper M. 1999. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science. 286, 1129–1132.
Hudson E.N., Weber G. 1973. Synthesis and characterization of two fluorescent sulfhydryl reagents. Biochemistry. 12, 4154–4161.
Martin-Jezequel V., Hildebrand M., Brzezinski M. 2000. Silicon metabolism in diatoms: Implication for growth. J. Phycol. 36, 821–840.
Marshall C.E. 1964. The physical chemistry and mineralogy of soils. In: Soil Materials. N.Y.: Wiley.
Krauskopf K.B. 1956. Dissolution and precipitation of silica at low temperatures. Geochim. Cosmochim. Acta. 46, 1–26.
Anderson M.A., F.M., Guillard R.R. 1978. Growth limitation of a coastal diatom by low zinc ion activity. Nature. 276, 70–71.
Rueter J.G, Jr., Morel F.M.M. 1981. The interaction between zinc deficiency and copper toxicity as it affects the silicic acid uptake mechanisms in Thalassiosira pseudonana. Limnol. Oceanogr. 26, 67–73.
Kiefer L.L., Fierke C.A. 1994. Functional characterization of human carbonic anhydrase II variants with altered zinc binding sites. Biochemistry. 33, 15233–15240.
Schröder H.C., Krasko A., Pennec G.L., Adell T., Wiens M., Hassanein H., Müller I., Mü ller W. 2003. Silicase, an enzyme which degrades biogenous amorphous silica: Contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. In: Silicon Biomineralization. Biology, Biochemistry, Molecular Biology, Biotechnology. Ed. Muller W.E.G. (Progress in Molecular and Subcellular Biology, vol. 33). Berlin: Springer, pp. 249–268.
Berry E., Zhang Z., Bellamy H., Huang L. 2000. Crystallographic location of two Zn2+-binding sites in the avian cytochrome bc1 complex. Biochim. Biophys. Acta. 1459, 440–448.
Sullivan C.W. 1979. Diatom mineralization of silicic acid: 4. Kinetics of soluble Si pool formation in exponentially growing and synchronized Navicula pelliculosa. J. Phycol. 15, 210–216.
Alexander G.B., Heston W.M., Iler R.K. 1954. The solubility of amorphous silica in water. J. Phys. Chem. 58, 435–455.
Drum R.W., Pankratz H.S. 1964. Postmitotic fine structure of Gomphonema parvulum. J. Ultrastruct. Res. 10, 217–223.
Reimann B.E.F., Lewin J.C., Volcani B.E. 1965. Studies on biochemistry and fine structure of silica shell formation in diatoms: 1. The structure of the cell wall of Cylindrotheca fusiformis Reimann and Lewin. J. Cell Biol. 24, 39–55.
Reimann B.E.F., Lewin J.C., Volcani B.E. 1966. Studies on biochemistry and fine structure of silica shell formation in diatoms: 2. The structure of the cell wall of Navicula pelliculosa (Breb.) Hilse. J. Phycol. 2, 74–84.
Round F.E., Crawford R.M., Mann D.G. 1990. The Diatoms. Biology and Morphology of the Genera. Cambridge: Cambridge Univ. Press.
Schmid A.M., Schutz D. 1979. Wall morphogenesis in diatoms: Deposition of silica by cytoplasmic vesicles. Protoplasma. 100, 267–288.
Gordon R., Drum R.W. 1994. The chemical basis of diatom morphogenesis. Int. Rev. Cytol. 150, 243–372.
Pickett-Heaps J., Schmid A.M., Edgar L.A. 1990. The cell biology of diatom valve formation. In: Progress in Phycological Research, vol. 7. Eds. Round F.E., Chapman D.J. Bristol: Biopress, pp. 1–168.
Parkinson J., Brechek Y., Gordon R. 1999. Centric diatom morphogenesis: A model based on DLA algorithm investigating the potential role of microtubules. Biochim. Biophys. Acta. 1452, 89–102.
Hildebrand M., Wetherbee R. 2003. Components and control of silicification in diatoms. In: Silicon Biomineralization. Biology, Biochemistry, Molecular Biology, Biotechnology. Ed. Müller W.E.G. (Progress in Molecular and Subcellular Biology, vol. 33). Berlin: Springer, pp. 11–57.
Kröger N., Deutzmann R., Bergsdorf C., Sumper M. 2000. Species-specific polyamines from diatoms: Control of silica morphology. Proc. Natl. Acad. Sci. USA. 97, 14133–14138.
Swift D.M., Wheeler A.P. 1992. Evidence of an organic matrix from diatom biosilica. J. Phycol. 28, 202–209.
Vreiling E.G., Beelen T.P.M., van Santen R.A., Gieskes W.W.C. 1999. Diatom silica biomineralization as an inspirational source of new approaches to silica production. J. Biotechnol. 70, 39–51.
Author information
Authors and Affiliations
Additional information
__________
Translated from Molekulyarnaya Biologiya, Vol. 39, No. 2, 2005, pp. 303–316.
Original Russian Text Copyright © 2005 by Sherbakova, Masyukova, Safonova, Petrova, Vereshagin, Minaeva, Adelshin, Triboy, Stonik, Aizdaitcher, Kozlov, Likhoshway, Grachev.
Rights and permissions
About this article
Cite this article
Sherbakova, T.A., Masyukova, Y.A., Safonova, T.A. et al. Conserved motif CMLD in silicic acid transport proteins of diatoms. Mol Biol 39, 269–280 (2005). https://doi.org/10.1007/s11008-005-0038-4
Received:
Issue Date:
DOI: https://doi.org/10.1007/s11008-005-0038-4