Skip to main content
Log in

Binding and transfer of an oligodeoxynucleotide containing the translation initiation site of the BCL2 mRNA into K562 cells

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A study was conducted of the interaction of an octadecameric oligodeoxynucleotide (dON) containing the BCL2 mRNA translation start with K562 cells. Both in solution and upon lipofection, the binding of dON used at a low concentration (≤30 nM) at 37°C involved two steps: saturating surface binding with the cell membrane and internalization. Three phases were revealed in the dynamics of internalization: the extent and rate of internalization increased during the first hour of incubation; decreased during the second hour; and then increased again, which was assumed to reflect the priming of new dON-binding sites. The binding constant and the number of binding sites were estimated at 10°C (the conditions preventing internalization) by consecutive dissociation of dON-cell complexes formed in 1 h at 37°C. Incubation of dON with cells led to the priming of new high-affinity binding sites and an increase of the binding constant to a level characteristic of high-affinity ligand-receptor interactions (109 M−1). High-affinity receptor-mediated binding preceded internalization of dON. Lipofection increased the binding constant and the number of binding sites severalfold but had virtually no effect on the temporal pattern and the extent of dON internalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Knorre D., Vlassov V., Zarytova V., Lebedev A., Fedorova O. 1994. In: Design and Targeted Reactions of Oligonucleotide Derivates. Boca Raton: CRC, pp. 150–298.

    Google Scholar 

  2. Dias N., Stein C.A. 2002. Antisense oligonucleotides: Basic concepts and mechanisms. Mol. Cancer Therapeut. 1, 347–355.

    CAS  Google Scholar 

  3. Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411, 494–498.

    Article  CAS  PubMed  Google Scholar 

  4. Aravin A.A., Klenov V.V., Vagin V.V., Rozovsky Ya.M., Gvozdev V.A. 2002. Role of double-stranded DNA in suppression of gene expression in eukaryotes. Mol. Biol. 36, 240–251.

    Article  CAS  Google Scholar 

  5. Stein C.A., Krieg A. 1997. Non-antisense effects of oligodeoxynucleotides. In: Antisense Technology. Eds. Lichteinstein C., Nellen W. Oxford: JRL, 240–264.

    Google Scholar 

  6. Krieg A.M., Yi A.K., Matson S., Waldschmidt T.J., Bishop G.A., Teasdale R., Koretzky G.A., Klinman D.M. 1995. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 74, 546–549.

    Article  Google Scholar 

  7. Lenert P., Yi A.K., Krieg A.M., Stunz L.L., Ashman R.F. 2003. Inhibitory oligonucleotides block the induction of AP-1 transcription factor by stimulatory CpG oligonucleotides in B cells. Antisense Nucleic Acid Drug Dev. 13, 143–150.

    Article  CAS  PubMed  Google Scholar 

  8. Perez J.R., Yuling L., Stein C.A., Mayjumder S., van Oorschot A., Narayanan R. 1994. Sequence-independent induction of Sp1 transcription factor activity by phosphorothioate oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA. 91, 5957–5961.

    CAS  PubMed  Google Scholar 

  9. Loke S.L., Stein C.A., Zhang X.H., Mori K., Nakanishi M., Subasinghe C., Cohen J.S., Neckers L.M. 1989. Characterization of oligonucleotide transport into living cells. Proc. Natl. Acad. Sci. USA. 86, 3474–3478.

    CAS  PubMed  Google Scholar 

  10. Yacubov L., Deeva E., Zarytova F., Ivanova E., Ryte A., Yurchenko L., Vlassov V. 1989. Mechanism of oligonucleotide uptake by cells: Involvement of specific receptors? Proc. Natl. Acad. Sci. USA. 86, 6454–6458.

    PubMed  Google Scholar 

  11. Lactionov P., Dazard J.-E., Vives E., Rycova E., Piette J., Vlassov V., Lebleu B. 1999. Characterisation of membrane oligonucleotide-binding proteins and nucleotide uptake in keratinocytes. Nucleic Acids Res. 27, 2315–2324.

    Article  PubMed  Google Scholar 

  12. Akhlynina T.V., Borovkova T.V., Levina A.S., Zarytova V.F., Timofeev A.M., Dukhovenskaya E.A., Grineva N.I. 2003. Abstr. Int. Conf. Targeting RNA: Artificial Ribonucleases, Conformational Traps and RNA Interference, Novosibirsk, Russia, p.36.

  13. Roychoudhury R., Wu R. 1980. Terminal transferase-catalysed addition of nucleotides to the 3′ termini of DNA. In: Methods in Enzymology. Eds. Grossman L., Moldave K. N.Y.: Academic, vol. 65, part I, pp. 43–62.

    Google Scholar 

  14. Osterman L.A. 1983. Issledovanie biologicheskikh makromolekul izoelektrofokusirovaniem, immunoelektroforezom i radioizotopnymi metodami (Analysis of Biological Macromolecules by Electrophoresis, Isoelectrofocusing, and Radioisotope Methods), Moscow: Nauka.

    Google Scholar 

  15. Haigler H., Maxfield F., Willingham M., Pastan I. 1980. Dancilcadaverine inhibits internalization of 125I-epidermal growth factor in BALB 3T3 cells. J. Biol. Chem. 255, 1239–1241.

    CAS  PubMed  Google Scholar 

  16. Tennenberg S.D., Zemlan F.P., Solomkin J.S. 1988. Characterization of N-formyl-methionyl-leucyl-phenylalanine receptors on human neutrophils. Effects of isolation and temperature on receptor expression and func-tional activity. J. Immunol. 141, 3937–3944.

    CAS  PubMed  Google Scholar 

  17. Sidorov G.V., Myasoedov N.F. 1974. Analysis of hydrogen isotope exchange between purines and water. Radiokhimiya. 16, 922–926.

    CAS  Google Scholar 

  18. Hoffman J.F., Linderman J.J., Omann G.M. 1996. Receptor up-regulation, internalization and interconverting receptor states. J. Biol. Chem. 271, 18394–18404.

    Article  CAS  PubMed  Google Scholar 

  19. Sklar L.A., Finney D.A. 1982. Analysis of ligand-receptor interactions with the fluorescence activated cell sorter. Cytometry. 3, 161–165.

    CAS  PubMed  Google Scholar 

  20. Guvacova M.A., Yacubov L.A., Vlodavsky I., Tonkinson J.L., Stein C.A. 1995. Phosphorothioate oligodeoxynucleotides bind to basic fibroblast growth factor, inhibit its binding to cell surface receptors and remove it from low affinity binding sites on extracellular matrix. J. Histochem. Cytochem. 270, 2620–2627.

    Google Scholar 

  21. Wen-Yi Gao, Jaroszewski J.W., Cohen J.S., Yung-Chi Cheng. 1990. Mechanisms of inhibition of herpes simplex virus type 2 growth by 28-mer phosphorothioate oligodeoxycytidine. J. Biol. Chem. 33, 20172–20178.

    Google Scholar 

  22. Rockwell P., O’Conner W.J., King K., Goldstein N.I., Zhang L.M., Stein C.A. 1997. Cell-surface perturbations of the epidermal growth factor and vascular endothelial growth factor receptors by phosphorothioate oligodeoxynucleotides. Proc. Natl. Acad. Sci. USA. 94, 6523–6598.

    Article  CAS  PubMed  Google Scholar 

  23. Bergan R.C., Kyle E., Connell Y., Neckers L. 1995. Inhibition of protein-tyrosine kinase activity in intact cells by the aptameric action of oligodeoxynucleotides. Antisense Res. Dev. 5, 33–38.

    CAS  PubMed  Google Scholar 

  24. NTI Database Summary.

  25. Deininger M.W., Vieira S., Mendiola R., Schultheis B., Goldman J.M., Melo J.V. 2000. BCR-ABL tyrosine kinase activity regulates the expression of multiple genes implicated in the pathogenesis of chronic myeloid leukemia. Cancer Res. 60, 2049–2055.

    CAS  PubMed  Google Scholar 

  26. Schindler T., Bornmann W., Pellicena P., Miller W.T., Clarkson B., Kuriyan J. 2000. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science. 289, 1938–1942.

    CAS  PubMed  Google Scholar 

  27. Hatzi E., Badet J. 1999. Expression of receptors for human angiogenin in vascular smooth muscle cells. Eur. J. Biochem. 260, 825–832.

    CAS  PubMed  Google Scholar 

  28. Sklar L.A., Finney D.A., Oades Z.G., Jesaitis A.J., Painter R.G., Cochrane C.G. 1984. The dynamics of ligand-receptor interactions. Real-time analyses of association, dissociation, and internalization of an N-formyl peptide and its receptors on the human neutrophil. J Biol. Chem. 259, 5661–5669.

    CAS  PubMed  Google Scholar 

  29. Stein C.A., Tonkinson J.L., Zhang L. M., Yakubov L., Gervasoni J., Taub R., Rotenberg S.A. 1993. Dynamics of internalization of phosphodiester oligonucleotides in HL60 cells. Biochemistry. 32, 4855–4861.

    CAS  PubMed  Google Scholar 

  30. Siess D., Vedder C., Merkens L., Tanaka T., Freed A., McCoy S., Heinrich M., Deffebach M., Bennet R., Hefeneider H. 2000. A human gene coding for membrane-associated nucleic acid-binding protein. J. Biol. Chem. 275, 33655–33662.

    CAS  PubMed  Google Scholar 

  31. Pantin V.I., Sats N.V., Surin V.L., Egorov L.V., Solovyev G.Ya., Borovkova T.V., Grineva N.I. 1991. Penetration of oligo/polynucleotides and their polyalkylated derivatives into rat cells transformed by simian adenovirus DNA. Mol. Biol. 25, 177–184.

    CAS  Google Scholar 

  32. Beltinger C., Saragovi H., Smith R., LeSauteur L., Shah N., DeDionisio L., Christensen L., Raible A., Jarett L., Gewitz A. 1995. Binding, uptake, and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides. J. Clin. Invest. 95, 1814–1823.

    CAS  PubMed  Google Scholar 

  33. Hartmann G., Krug A., Bidlingmaier M., Hacker U., Eigler A., Albrecht R., Strasburger C. J., Endres S. 1988. Spontaneous and cationic lipid-mediated uptake of antisense oligonucleotides in human monocytes and lymphocytes. J. Pharmacol. Exp. Ther. 285, 920–928.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 2, 2005, pp. 235–244.

Original Russian Text Copyright © 2005 by Timofeev, Borovkova, Nydenova, Akhlynina, Shmarov, Grineva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timofeev, A.M., Borovkova, T.V., Nydenova, N.M. et al. Binding and transfer of an oligodeoxynucleotide containing the translation initiation site of the BCL2 mRNA into K562 cells. Mol Biol 39, 210–217 (2005). https://doi.org/10.1007/s11008-005-0031-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0031-y

Key words

Navigation