Skip to main content
Log in

Development of a yeast vector system to study the regulatory functions of eukaryotic noncoding elements

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

An original yeast system with two reporter genes oriented oppositely to each other was developed to study the regulatory functions of noncoding genomic sequences. A fragment of HERV-K LTR from region 22-19 of human chromosome 7p22 was tested for promoter activity. The LTR 22-19 fragment was shown to initiate transcription of a reporter regardless of its orientation, and to control both reporters simultaneously. The promoter activity was compared for the LTR 22-19 fragment and two potent promoters in Saccharomyces cerevisiae cells. The activity of the LTR 22-19 fragment accounted for about 0.34% of the activity of the inducible GAL1 promoter and for 0.25% of the activity of the constitutive TDH promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sugimoto J., Nobuo M., Kinjo Y., Takasu N., Oda T., Jinno Y. 2001. Transcriptionally Active HERV-K genes: Identification, isolation and chromosomal mapping. Genomics. 72, 137–144.

    Article  CAS  PubMed  Google Scholar 

  2. Domansky A.N., Kopantzev E.P., Snezhkov E.V., Lebedev Y.B., Leib-Mosch C., Sverdlov E.D. 2000. Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett. 472, 191–195.

    Article  CAS  PubMed  Google Scholar 

  3. Sverdlov E.D. 2000. Retroviruses and primate evolution. BioEssays. 22, 161–171.

    Article  CAS  PubMed  Google Scholar 

  4. Hughes J.F., Coffin J.M. 2001. Evidence for genomic rearrangements mediated by human endogenous retroviruses during primate evolution. Nature Genet. 29, 487–489.

    Article  CAS  PubMed  Google Scholar 

  5. Hughes J.F., Coffin J.M. 2002. A novel endogenous retrovirus-related element in the human genome resembles a DNA transposon: Evidence for evolutionary link? Genomics. 80, 453–455.

    Article  CAS  PubMed  Google Scholar 

  6. Vinogradova T.V., Leppik L.P., Nikolaev L.G., Akopov S.B., Kleiman A.M., Senyuta N.B., Sverdlov E.D. 2001. Solitary human endogenous retroviruses-K LTRs retain activity in vivo, the mode of which is different in different cell types. Virology. 290, 83–90.

    Article  CAS  PubMed  Google Scholar 

  7. Kapitonov V.V., Jurka J. 1999. The long terminal repeat of an endogenous retrovirus induces alternative splicing and encodes an additional carboxy-terminal sequence in the human leptin receptor. J. Mol. Evol. 48, 248–251.

    CAS  PubMed  Google Scholar 

  8. Vinogradova T., Volik S., Lebedev Y., Shevchenko Y., Lavrentyeva I., Khil P., Grzeschik K.H., Ashworth L.K., Sverdlov E. 1997. Positioning of 72 potentially full size LTRs of human endogenous retroviruses HERV-K on the human chromosome 19 map. Occurrences of the LTRs in human gene sites. Gene. 199, 255–264.

    Article  CAS  PubMed  Google Scholar 

  9. Sverdlov E.D. 1999. Retroviral regulators of gene expression in the human genome as possible factors of its evolution. Bioorg. Khim. 25, 821–827.

    CAS  PubMed  Google Scholar 

  10. Goldenkova I.V. 2002. Reporter systems: Possibilities of studying different aspects of gene expression regulation. Usp. Sovrem. Biol. 122, 515–526.

    CAS  Google Scholar 

  11. Maniatis, T., Fritsch, E.F., Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Lab. Press.

    Google Scholar 

  12. Goldenkova I.V., Musiichuk K.A., Piruzyan E.S. 2002. A reporter system based on thermostability of lichenase from Clostridium tharminallum: Application to studies on gene expression in prokaryotic and eukaryotic cells. Mol. Biol. 36, 868–876.

    Article  CAS  Google Scholar 

  13. Piruzian E.S., Goldenkova I.V., Musiychuk K.A., Kobets N.S., Arman I.P., Bobrysheva I.V., Chekhuta I.A., Glazkova D. 2002. A reporter system for prokaryotic and eukaryotic cells based on the thermostable lichenase from Clostridium thermocellum. Mol. Gen. Genomics. 266, 778–786.

    Article  CAS  Google Scholar 

  14. Glazkova D.V., Efimenko I.G., Legchilina S.P., Boznhold D., Greshik K.-Ch., Arman I.P. 2000. TAR cloning of the human chromosome 7 short arm in yeast and search for terminal repeats. Genetika. 36, 622–629.

    CAS  PubMed  Google Scholar 

  15. Green L.A., Tischler A. 1976. Establishment of a nonadrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA. 73, 2424–2428.

    PubMed  Google Scholar 

  16. Long Q., Bengra C., Li C., Kutlar F., Tuan D. 1998. A long terminal repeat of the human endogenous retrovirus ERV-9 is located in the 5′ boundary area of the human beta-globin locus control region. Genomics. 54, 542–555.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 2, 2005, pp. 207–213.

Original Russian Text Copyright © 2005 by Abdeeva, Komakhin, Musiychuk, Goldenkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdeeva, I.A., Komakhin, R.A., Musiychuk, K.A. et al. Development of a yeast vector system to study the regulatory functions of eukaryotic noncoding elements. Mol Biol 39, 185–190 (2005). https://doi.org/10.1007/s11008-005-0027-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0027-7

Key words

Navigation