Skip to main content
Log in

Molecular cloning and characterization of a novel ice gene from Capsella bursa-pastoris

  • Genomics. Transcriptomics. Proteomics
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A new ice gene (designated as Cbice53, an inducer of CBF expression) was cloned from Capsella bursa-pastoris by rapid amplification of cDNA ends (RACE). The full-length cDNA of Cbice53 was 1811 bp long, with a 1476-bp open reading frame (ORF) encoding a Myc-like protein of 492 amino acids. The predicted CbICE53 protein contained a potential basic helix-loop-helix domain, a nuclear localization signal (NLS), an RNA-binding region (RGG box), and N-glycosylation and kinase phosphorylation sites. Bioinformatic analysis showed that CbICE53 was highly homologous to ICE1 from Arabidopsis thaliana. Transcription of Cbice53 gene was induced transiently during salt and cold treatments, suggesting that it was somehow involved in cold acclimation. The results of our study indicate that the Cbice53 gene is a new member of the ice gene family and may have a role in cold and salt responsiveness in C. bursa-pastoris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Thomashow M.E. 1999. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 571–599.

    Google Scholar 

  2. Knight H., Veale E.L., Warren G.J., Knight M.R. 1999. The sfr6 mutation in Arabidopsis suppresses lo2-temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell. 11, 875–886.

    Google Scholar 

  3. Gong Z., Lee H., Xiong L., Jagendorf A., Stevenson B., Zhu J.K. 2002. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc. Natl. Acad. Sci. USA. 99, 11507–11512.

    Google Scholar 

  4. Stockinger E.J., Gilmour S.J., Thomashow M.F. 1997. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/ DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA. 94, 1035–1040.

    Google Scholar 

  5. Gilmour S.J., Artus N.N., Thomashow M.F. 1992. cDNA sequence analysis and expression of two cold regulated genes of Arabidopsis thaliana. Plant Mol. Biol. 18, 13–21.

    Google Scholar 

  6. Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 10, 1391–1406.

    Article  CAS  PubMed  Google Scholar 

  7. Medina J., M., Terol J., Perez-Alonso M., Salinas J. 1999. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol. 119, 463–470.

    Google Scholar 

  8. Gao M.J., Allard G., Byass L., Flanaganl A.M., Singh J. 2002. Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol. Biol. 49, 459–471.

    Google Scholar 

  9. Thomashow M.F. 2001. So what’s new in the field of plant cold acclimation? Lots! Plant Physiol. 125, 89–93.

    CAS  PubMed  Google Scholar 

  10. Tahtiharju S., Palva T. 2001. Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. Plant J. 26, 461–470.

    Google Scholar 

  11. Chinnusamy V., Ohta M., Kanrar S., Lee B., Hong X., Agarwal M., Zhu J.K. 2003. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopisis. Genes Dev. 17, 1043–1054.

    Google Scholar 

  12. Shinwari Z.K., Nakashima K., Miura S., Kasuga M., Seki M., Yamaguchi-Shinozaki K., Shinozaki K. 1998. An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem. Biophys. Res. Commun. 250, 161–170.

    Google Scholar 

  13. Lee H., Xiong L., Gong Z., Ishitani M., Stevenson B., Zhu J.K. 2001. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING figure protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev. 15, 912–924.

    Google Scholar 

  14. Murre C., McCaw P.S., Baltimore D. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 56, 777–783.

    Google Scholar 

  15. Littlewood T.D., Evan G.I. 1995. Transcription factors 2: helix-loop-helix. Protein Profile. 2, 621–702.

    Google Scholar 

  16. Garrell J., Campuzano S. 1991. The helix-loop-helix domain: A common motif for bristles, muscles and sex. Bioessays. 13, 493–498.

    Google Scholar 

  17. Ma P.C., Rould M.A., Weintraub H., Pabo C.O. 1994. Crystal structure of MyoD bHLH domain—DNA complex: Perspectives on DNA recognition and implications for transcriptional activation. Cell. 77, 451–459.

    Article  CAS  PubMed  Google Scholar 

  18. Ellenberger T., Fass D., Arnaud M., Harrison S.C. 1994. Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimmer. Genes Dev. 8, 970–980.

    Google Scholar 

  19. Harrison C.V., Dolde C., Gillison M.L., Kato G.J. 1992. Discrimination between related DNA sites by a single amino acid residue of Myc-related basic-helix-loop-helix proteins. Proc. Natl. Acad. Sci. USA. 89, 599–602.

    Google Scholar 

  20. Baker S.S., Wilhelm K.S., Thomashow M.F. 1994. The 5′-region of Arabidopsis thaliana cor15a has cis-acting. elements that confer cold-, drought-and ABA-regulated gene expression. Plant. Mol. Biol. 24, 701–713.

    Google Scholar 

  21. Spelt C., Quattrocchio F., Mol J.N.M., Koes R. 2000. Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell. 12, 1619–1632.

    Google Scholar 

  22. Walker A.R., Walker P.A., Bolognesi-Winfield A.C., James C.M., Srinivasan N., Blundell T.L., Esch J.J., Marks M.D., Gray J.C. 1999. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell. 11, 1337–1350.

    Article  Google Scholar 

  23. Jagglo-Ottosen K.R., Gilmour S.J., Zarka D.G., Schabenberger O., Thomashow M.F. 1998. Arabidopsis cbf1 overexpression induces COR genes and enhances freezing tolerance. Science. 280, 104–106.

    Article  PubMed  Google Scholar 

  24. Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17, 287–291.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Molekulyarnaya Biologiya, Vol. 39, No. 1, 2005, pp. 21–29.

Original English Text Copyright © 2005 by Xinglong Wang, Xiaoqing Sun, Sixiu Liu, Li Liu, Xiaojun Liu, Xiaofen Sun, Kexuan Tang.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Sun, X., Liu, S. et al. Molecular cloning and characterization of a novel ice gene from Capsella bursa-pastoris . Mol Biol 39, 18–25 (2005). https://doi.org/10.1007/s11008-005-0003-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0003-2

Key words

Navigation