Skip to main content
Log in

Calculating the first nontrivial 1-cocycle in the space of long knots

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

For spaces of knots in ℝ3, the Vassiliev theory defines the so-called cocycles of finite order. The zero-dimensional cocycles are finite-order invariants. The first nontrivial cocycle of positive dimension in the space of long knots is one-dimensional and is of order 3. We apply the combinatorial formula given by Vassiliev in his paper

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Bibliography

  1. V. A. Vassiliev, “On combinatorial formulas for cohomology of spaces of knots,” Moscow Math. J., 1 (2001), no. 1, 91–123.

    MATH  MathSciNet  Google Scholar 

  2. V. A. Vassiliev, “Cohomology of knot spaces,” in: Theory of Singularities and Its Applications, Advances in Soviet Math., vol. 1, ed. V. I. Arnold, AMS, Providence, RI, 1990, pp. 23–69.

    Google Scholar 

  3. D. Bar-Natan, “On the Vassiliev knot invariants,” Topology, 34 (1995), 423–472.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. V. Chmutov, S. V. Duzhin, and S. K. Lando, “Vassiliev knot invariants. I. Introduction,” in: Singularities and Bifurcations, Adv. in Sov. Math., vol. 21, AMS, Providence, RI, 1994, pp. 117–126.

    Google Scholar 

  5. M. Kontsevich, “Vassiliev’s knot invariants,” in: Adv. in Sov. Math., vol. 16, no. 2, AMS, Providence RI, 1993, pp. 137–150.

    Google Scholar 

  6. V. A. Vassiliev, “Topology of two-connected graphs and homology of spaces of knots,” in: Differential and Symplectic Topology of Knots and Curves, AMS translations, Ser. 2, vol. 190, ed. S. Tabachnikov, AMS, Providence RI, 1999, pp. 253–286.

    Google Scholar 

  7. V. A. Vassiliev, “Homology of spaces of knots in any dimensions,” Philos. Transact. of the London Royal Society, 359 (2001), no. 1784, 1343–1364.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Polyak and O. Viro, “Gauss diagram formulas for Vassiliev invariants,” Internat. Math. Res. Notes, 11 (1994), 445–453.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Goussarov, M. Polyak, and O. Viro, “Finite type invariants of classical and virtual knots,” Topology, 39 (2000), no. 5, 1045–1068.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Budney, Little Cubes and Long Knots, GT/0309427.

  11. R. Budney and F. Cohen, On the Homology of the Space of Knots (to appear).

  12. P. Gilmer, “A method for computing the Arf invariants for links,” in: Quantum Topology, Series on Knots and Everything, vol. 3, eds. L. Kauffman and R. Baadhio, World Sci., Singapore, 1993, pp. 174–181.

    Google Scholar 

  13. L. H. Kauffman, “On Knots,” in: Annals of Math., Studies 115, Princeton University Press, 1987.

  14. J. Lannes, “Sur les invariants de Vassiliev de degré inférieur ou égal à 3,” Enseign. Math. (2), 39 (1993), no. 3–4, 295–316.

    MATH  MathSciNet  Google Scholar 

  15. Ng Ka Yi, “Groups of ribbon knots,” Topology, 37 (1998), 441–458.

    Article  MathSciNet  Google Scholar 

  16. M. Polyak and O. Viro, “On the Casson knot invariant,” Journal of Knot Theory and Its Ramifications, 10 (2001), no. 5, 711–738; GT/9903158v1.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Hatcher, Topological Moduli Spaces of Knots, http://math.cornell.edu/∼hatcher.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turchin, V. Calculating the first nontrivial 1-cocycle in the space of long knots. Math Notes 80, 101–108 (2006). https://doi.org/10.1007/s11006-006-0113-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11006-006-0113-8

Key words

Navigation