Skip to main content
Log in

Density Modulo 1 of Sublacunary Sequences

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We prove the existence of real numbers badly approximated by rational fractions whose denominators form a sublacunar sequence. For example, for the ascending sequence s n , n = 1, 2, 3, ..., generated by the ordered numbers of the form 2i3j, i, j = 1, 2, 3, ..., we prove that the set of real numbers α such that inf n∈ℕ ns n α‖ > 0 is a set of Hausdorff dimension 1. The divergence of the series \(\sum _{n = 1}^\infty \tfrac{1}{n}\) implies that the Lebesgue measure of those numbers is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Erdos, Repartition Modulo 1, Lecture Notes in Math., vol. 475, Springer-Verlag, New York, 1975.

    Google Scholar 

  2. D. de Mathan, “Numbers contravening a condition in density modulo 1,” Acta Math. Hungar., 36 (1980), 237–241.

    Google Scholar 

  3. A. D. Pollington, “On the density of sequence {n k θ},” Illinois J. Math., 23 (1979), 511–702.

    Google Scholar 

  4. M. Boshernitzan, “Density modulo 1 of dilations of sublacunary sequences,” Adv. in Math., 108 (1994), 104–117.

    Article  Google Scholar 

  5. J. W. S. Cassels, “Some metrical theorems in Diophantine approximaion. I,” Proc. Cambridge Philos. Soc., 46 (1950), no. 2, 209–218.

    Google Scholar 

  6. R. J. Duffin and A. C. Schaeffer, “Khintchine’s problem in metric Diophantine approximation,” Duke Math. J., 8 (1941), 243–255.

    Article  Google Scholar 

  7. W. J. LeVeque, “On the frequency of small fractional parts of real sequenses. III,” J. Reine Angew. Math., 202 (1959), 215–220.

    Google Scholar 

  8. R. K. Akhunzhanov and N. G. Moshchevitin, “On chromatic numbers of distance graphs related to lacunar sequences,” Dokl. Ross. Akad. Nauk [Russian Acad. Sci. Dokl. Math.], 397 (2004), no. 3, 1–2.

    Google Scholar 

  9. Y. Katznelson, “Chromatic numbers of Cayley graphs on ℤ and recurrence,” Combinatorica, 21 (2001), no. 2, 211–219.

    Article  Google Scholar 

  10. I. Z. Ruzsa, Zs. Tuza, and M. Voigt, “Distance graphs with finire chromatic number,” J. Combinatorial Theory. Ser. B, 85 (2002), 181–187.

    Article  Google Scholar 

  11. H. Furstenberg, “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation,” Math. Systems Theory, 1 (1967), 1–49.

    Article  Google Scholar 

  12. M. D. Boshernithan, “Elementary proof of Furstenberg’s Diophantine result,” Proc. Amer. Math. Soc., 122 (1994), 67–70.

    Google Scholar 

  13. G. H. Hardy and J. E. Littlewood, “The lattice points of a right angled triangle. II,” Abh. Math. Sem. Hamburg Univ., 1 (1922), 212–249.

    Google Scholar 

  14. N. I. Fel’dman, The VIIth Hilbert Problem [in Russian], MSU, Moscow, 1987.

    Google Scholar 

  15. H. G. Eggleston, “Sets of fractional dimension which occur in some problems of number theory,” Proc. London Math. Soc., 54 (1951–52), 42–93.

    Google Scholar 

  16. R. K. Akhunzhanov, “On constructing of numbers with give Diophantine properties,” Tchebyshev Sbornik, 5 (2004), no. 2 (10), 19–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Matematicheskie Zametki, vol. 77, no. 6, 2005, pp. 803–813.

Original Russian Text Copyright ©2005 by R. K. Akhunzhanov, N. G. Moshchevitin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akhunzhanov, R.K., Moshchevitin, N.G. Density Modulo 1 of Sublacunary Sequences. Math Notes 77, 741–750 (2005). https://doi.org/10.1007/s11006-005-0075-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11006-005-0075-2

Key words

Navigation