Skip to main content
Log in

Polyhedral realizations for crystal bases of integrable highest weight modules and combinatorial objects of type \(\textrm{A}^{(1)}_{n-1}\), \(\textrm{C}^{(1)}_{n-1}\), \(\textrm{A}^{(2)}_{2n-2}\), \(\textrm{D}^{(2)}_{n}\)

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider polyhedral realizations for crystal bases \(B(\lambda )\) of irreducible integrable highest weight modules of a quantized enveloping algebra \(U_q(\mathfrak {g})\), where \(\mathfrak {g}\) is a classical affine Lie algebra of type \(\textrm{A}^{(1)}_{n-1}\), \(\textrm{C}^{(1)}_{n-1}\), \(\textrm{A}^{(2)}_{2n-2}\) or \(\textrm{D}^{(2)}_{n}\). We will give explicit forms of polyhedral realizations in terms of extended Young diagrams or Young walls that appear in the representation theory of quantized enveloping algebras of classical affine type. As an application, a combinatorial description of \(\varepsilon _k^*\) functions on \(B(\infty )\) will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Berenstein, A., Zelevinsky, A.: Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143(1), 77–128 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Genz, V., Koshevoy, G., Schumann, B.: Combinatorics of canonical bases revisited: type A. Sel. Math. (N.S.) 27(4), 67,45 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gleizer, O., Postnikov, A.: Littlewood–Richardson coefficients via Yang–Baxter equation. Int. Math. Res. Not. 14, 741–774 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hayashi, T.: \(Q\)-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras. Commun. Math. Phys. 127(1), 129–144 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Hernandez, D., Nakajima, H.: Level 0 monomial crystals. Nagoya Math. J. 184, 85–153 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hoshino, A.: Polyhedral realizations of crystal bases for quantum algebras of finite types. J. Math. Phys. 46(11), 113514, 31 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hoshino, A.: Polyhedral realizations of crystal bases for quantum algebras of classical affine types. J. Math. Phys. 54(5), 053511, 28 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hoshino, A., Nakada, K.: Polyhedral realizations of crystal bases \(B(\lambda )\) for quantum algebras of nonexceptional affine types. J. Math. Phys. 60(9), 56 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jimbo, M., Misra, K.C., Miwa, T., Okado, M.: Combinatorics of representations of \(U_q(\widehat{\mathfrak{s} \mathfrak{l} }(n))\) at \(q=0\). Commun. Math. Phys. 136(3), 543–566 (1991)

    Article  ADS  MATH  Google Scholar 

  10. Kanakubo, Y.: Polyhedral realizations for \(B(\infty )\) and extended Young diagrams, Young walls of type \({\rm A}^{(1)}_{n-1}\), \({\rm C}^{(1)}_{n-1}\), \({\rm A}^{(2)}_{2n-2}\), \({\rm D}^{(2)}_{n}\). Algebras Represent. Theor. (2022). https://doi.org/10.1007/s10468-022-10172-z

    Article  Google Scholar 

  11. Kanakubo, Y., Nakashima, T.: Adapted sequence for polyhedral realization of crystal bases. Commun. Algebra 48(11), 4732–4766 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kanakubo, Y., Nakashima, T.: Adapted sequences and polyhedral realizations of crystal bases for highest weight modules. J. Algebra 574, 327–374 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kang, S.-J.: Crystal bases for quantum affine algebras and combinatorics of Young walls. Proc. Lond. Math. Soc. (3) 86(1), 29–69 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kang, S.-J., Kwon, J.-H.: Crystal bases of the Fock space representations and string functions. J. Algebra 280(1), 313–349 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kang, S.-J., Misra, K.C., Miwa, T.: Fock space representations of the quantized universal enveloping algebras \(U_q(C_{\ell }^{(1)})\), \(U_q(A_{2l}^{(2)})\), and \(U_q(D_{l+1}^{(2)})\). J. Algebra 155(1), 238–251 (1993)

    Article  MathSciNet  Google Scholar 

  16. Kashiwara, M.: Crystalling the \(q\)-analogue of universal enveloping algebras. Commun. Math. Phys. 133, 249–260 (1990)

    Article  ADS  MATH  Google Scholar 

  17. Kashiwara, M.: On crystal bases of the \(q\)-analogue of universal enveloping algebras. Duke Math. J. 63(2), 465–516 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kashiwara, M.: The crystal base and Littelmann’s refined Demazure character formula. Duke Math. J. 71(3), 839–858 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kashiwara, M.: Realizations of crystals. In: Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemporary Mathematics, vol. 325, pp. 133–139. American Mathematical Society, Providence (2003)

  20. Kashiwara, M., Nakashima, T.: Crystal graphs for representations of the \(q\)-analogue of classical Lie algebras. J. Algebra 165(2), 295–345 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, J.-A., Shin, D.-U.: Monomial realization of crystal bases \(B(\infty )\) for the quantum finite algebras. Algebra Represent. Theory 11(1), 93–105 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Littelmann, P.: Paths and root operators in representation theory. Ann. Math. 142, 499–525 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Littelmann, P.: Cones, crystals, and patterns. Transform. Groups 3(2), 145–179 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Am. Math. Soc. 3(2), 447–498 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nakajima, H.: \(t\)-analogs of \(q\)-characters of quantum affine algebras of type \(A_n\), \(D_n\). In: Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemporary Mathematics, vol. 325, pp. 141–160. American Mathematical Society, Providence (2003)

  26. Nakashima, T.: Polyhedral realizations of crystal bases for integrable highest weight modules. J. Algebra 219(2), 571–597 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nakashima, T., Zelevinsky, A.: Polyhedral realizations of crystal bases for quantized Kac-Moody algebras. Adv. Math. 131(1), 253–278 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP20J00186.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Kanakubo.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanakubo, Y. Polyhedral realizations for crystal bases of integrable highest weight modules and combinatorial objects of type \(\textrm{A}^{(1)}_{n-1}\), \(\textrm{C}^{(1)}_{n-1}\), \(\textrm{A}^{(2)}_{2n-2}\), \(\textrm{D}^{(2)}_{n}\). Lett Math Phys 113, 60 (2023). https://doi.org/10.1007/s11005-023-01680-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01680-0

Keywords

Mathematics Subject Classification

Navigation