Skip to main content
Log in

Defects via factorization algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We provide a mathematical formulation of the idea of a defect for a field theory, in terms of the factorization algebra of observables and using the BV formalism. Our approach follows a well-known ansatz identifying a defect as a boundary condition along the boundary of a blowup, but it uses recent work of Butson–Yoo and Rabinovich on boundary conditions and their associated factorization algebras to implement the ansatz. We describe how a range of natural examples of defects fits into our framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayala, D., Francis, J.: Factorization homology of topological manifolds. J. Topol. 8(4), 1045–1084 (2015). https://doi.org/10.1112/jtopol/jtv028

    Article  MathSciNet  MATH  Google Scholar 

  2. Ayala, D., Francis, J., Tanaka, H.L.: Factorization homology of stratified spaces. Sel. Math. (N.S.) 23(1), 293–362 (2017). https://doi.org/10.1007/s00029-016-0242-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Albert, B.I.: Heat Kernel renormalization on manifolds with boundary (2016). arXiv: 1609.02220 [math-ph]

  4. Butson, D., Yoo, P.: Degenerate classical field theories and boundary theories (2016). arXiv:1611.00311

  5. Calaque, D.: Derived Stacks in Symplectic Geometry. New Spaces in Physics-Formal and Conceptual Reflections, pp. 155–201. Cambridge University Press, Cambridge (2021)

    MATH  Google Scholar 

  6. Contreras, I., Elliott, C., Gwilliam, O.: The factorization algebra of a magnetic monopole. (2024) (in preparation)

  7. Costello, K., Gwilliam, O.: Factorization Algebras in Quantum Field Theory. New Mathematical Monographs, vols. 1, 31, p. ix+387. Cambridge University Press, Cambridge (2017)

  8. Costello, K., Gwilliam, O.: Factorization Algebras in Quantum Field Theory, New Mathematical Monographs, vols. 2, 41, p. xiii+402. Cambridge University Press, Cambridge (2021). https://doi.org/10.1017/9781316678664

  9. Costello, K., Li, S.: Twisted supergravity and its quantization (2016). arXiv:1606.00365 [hep-th]

  10. Cattaneo, A.S., Mnev, P., Reshetikhin, N.: Classical BV theories on manifolds with boundary. Commun. Math. Phys. 332(2), 535–603 (2014). https://doi.org/10.1007/s00220-014-2145-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Cattaneo, A.S., Mnev, P., Reshetikhin, N.: Perturbative quantum Gauge theories on manifolds with boundary. Commun. Math. Phys. 357(2), 631–730 (2018). https://doi.org/10.1007/s00220-017-3031-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Costello, K.: Renormalization and Effective Field Theory, vol. 170. American Mathematical Society, Providence (2011)

    MATH  Google Scholar 

  13. Costello, K., Yamazaki, M.: Gauge Theory and Integrability, III (2019). arXiv: 1908.02289 [hep-th]

  14. Fradkin, E.: Disorder operators and their descendants. J. Stat. Phys. 167, 427 (2017). arXiv: 1610.05780 [cond-mat.stat-mech]

  15. Gwilliam, O., Rabinovich, E., Williams, B.R.: Factorization algebras and abelian CS/WZW-type correspondences (2020). arXiv: 2001.07888

  16. Kapustin, A.: Wilson-’t Hooft operators in four-dimensional Gauge theories and S-duality. Phys. Rev. D (3) 74(2), 025005 (2006). https://doi.org/10.1103/PhysRevD.74.025005

    Article  ADS  MathSciNet  Google Scholar 

  17. Kapustin, A.: Topological field theory, higher categories, and their applications. In: Proceedings of the International Congress of Mathematicians. Volume III. Hindustan Book Agency, New Delhi, pp. 2021–2043 (2010)

  18. Kadanoff, L.P., Ceva, H.: Determination of an operator algebra for the two-dimensional Ising model. Phys. Rev. B 3, 3918–3938 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kapustin, A., Seiberg, N.: Coupling a QFT to a TQFT and duality. JHEP 04, 001 (2014). arXiv:1401.0740 [hep-th]

  20. Losev, A.: Topological field theories, Lecture 1 (1999). https://youtu.be/wsX6nuY_xH8 (visited on 09/09/2022)

  21. Mnev, P.: A construction of observables for AKSZ sigma models. Lett. Math. Phys. 105(12), 1735–1783 (2015). https://doi.org/10.1007/s11005-015-0788-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Mnev, P., Schiavina, M., Wernli, K.: Towards holography in the BV-BFV setting. Ann. Henri Poincaré 21(3), 993–1044 (2020). https://doi.org/10.1007/s00023-019-00862-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted symplectic structures. Publ. Math. Inst. Hautes Études Sci. 117, 271–328 (2013). https://doi.org/10.1007/s10240-013-0054-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Paquette, N.M., Williams, B.R.: Koszul duality in quantum field theory (2021). arXiv:2110.10257

  25. Rabinovich, E.: Factorization algebras for classical bulk-boundary systems (2020). arXiv:2008.04953

  26. Rabinovich, E.: Factorization Algebras for Bulk-Boundary Systems, Ph.D. Thesis. University of California, Berkeley (2021). arXiv:2111.01757

  27. t’Hooft, G.: On the phase transition towards permanent quark confinement. Nucl. Phys. B 138, 1–25 (1978)

  28. Taubes, C.H.: Differential Geometry. Oxford Graduate Texts in Mathematics. Bundles, Connections, Metrics and Curvature, vol. 23, p. xiv+298. Oxford University Press, Oxford (2011). https://doi.org/10.1093/acprof:oso/9780199605880.001.0001

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We have benefited from discussions with many people about defects, factorization algebras, and the BV formalism. We would like to thank Iván Burbano, Dylan Butson, Alberto Cattaneo, Kevin Costello, John Francis, Ben Heidenreich, Rune Haugseng, John Huerta, Theo Johnson-Freyd, Pavel Mnev, Eugene Rabinovich, Ingmar Saberi, Pavel Safronov, Claudia Scheimbauer, Michele Schiavina, Christoph Schweigert, Stephan Stolz, Matt Szczesny, Peter Teichner, Ödül Tetik, Alessandro Valentino, Konstantin Wernli, Brian Williams, and Philsang Yoo; undoubtedly more should be listed, as this is a frequent topic of conversation. Pavel Mnev, in particular, suggested some useful literature and history, and Ödül Tetik explained his ideas for pursuing geometric versions of the Ayala–Francis–Tanaka results. The referee gave us helpful feedback that clarified several points and caught several errors; we appreciate their close reading and encouragement. The National Science Foundation supported O.G. through DMS Grants No. 1812049 and 2042052. I.C. thanks the Amherst College Provost and Dean of the Faculty’s Research Fellowship (2021–2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Contreras.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras, I., Elliott, C. & Gwilliam, O. Defects via factorization algebras. Lett Math Phys 113, 46 (2023). https://doi.org/10.1007/s11005-023-01670-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01670-2

Keywords

Mathematics Subject Classification

Navigation