Skip to main content
Log in

Bethe ansatz diagonalization of the Heun–Racah operator

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The diagonalization of the Heun–Racah operator is studied with the help of the modified algebraic Bethe ansatz. This operator is the most general bilinear expression in two generators of the Racah algebra. A presentation of this algebra is given in terms of dynamical operators and allows the construction of Bethe vectors for the Heun–Racah operator. The associated Bethe equations are derived for both the homogeneous and inhomogeneous cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avan, J., Belliard, S., Grosjean, N., Pimenta, R.A.: Modified algebraic Bethe ansatz for XXZ chain on the segment—III—Proof. Nucl. Phys. B 899, 229 (2015). arXiv:1506.02147

  2. Baseilhac, P., Pimenta, R.: Diagonalization of the Heun–Askey–Wilson operator, Leonard pairs and the algebraic Bethe ansatz. Nucl. Phys. B 949, 114824 (2019). arXiv:1909.02464

  3. Baseilhac, P., Tsujimoto, S., Vinet, L., Zhedanov, A.: The Heun–Askey–Wilson algebra and the Heun operator of Askey–Wilson type. Ann. Henri Poincaré 20, 3091–3112 (2019). arXiv:1811.11407

  4. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

  5. Belliard, S.: Modified algebraic Bethe ansatz for XXZ chain on the segment—I: triangular cases. Nucl. Phys. B 892, 1–20 (2015). arXiv:1408.4840

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Belliard, S., Crampe, N.: Heisenberg \(XXX\) model with general boundaries: eigenvectors from Algebraic Bethe ansatz. SIGMA 9, 072 (2013). arXiv:1309.6165

    MathSciNet  MATH  Google Scholar 

  7. Belliard, S., Pimenta, R.A.: Modified algebraic Bethe ansatz for XXZ chain on the segment—II: general cases. Nucl. Phys. B 894, 527 (2015). arXiv:1412.7511

    Article  ADS  MATH  Google Scholar 

  8. Bergeron, G., Crampe, N., Tsujimoto, S., Vinet, L., Zhedanov, A.: The Heun–Racah and Heun–Banna–Ito algebras. J. Math. Phys. 61, 081701 (2020). arXiv:2003.09558

  9. Bernard, P.-A., Crampe, N., Nepomechie, R.I., Parez, G., Poulain d’Andecy, L., Vinet, L.: Entanglement of inhomogeneous free fermions on hyperplane lattices. arXiv:2206.06509

  10. Bernard, P.-A., Crampe, N., Shaaban Kabakibo, D., Vinet, L.: Heun operator of Lie type and the modified algebraic Bethe ansatz. J. Math. Phys. 083501, 62 (2021). arXiv:2011.11659

  11. Bernard, P.-A., Crampe, N., Vinet, L.: Entanglement of Free Fermions on Hamming Graphs, arXiv:2103.15742

  12. Bernard, P.-A., Crampe, N., Vinet, L.: Entanglement of Free Fermions on Johnson Graphs, arXiv:2104.11581

  13. Bernard, P.-A., Crampe, N., Vinet, L.: An explanation of the commuting operator “miracle” in time and band limiting, arXiv:2201.03646

  14. Bernard, P.-A., Crampe, N., Vinet, L.: Time and band limiting operator and Bethe ansatz. J. Phys. A: Math. Theor. 55, 285201 (2022). arXiv:2201.04589

  15. Bockting-Conrad, S., Huang, H.-W.: The universal enveloping algebra of \(sl_2\) and the Racah algebra. Communications in Algebra 48, 1022–1040 (2020). arXiv:1907.02135

  16. Cao, J., Lin, H.-Q., Shi, K., Wang, Y.: Exact solutions and elementary excitations in the XXZ spin chain with unparallel boundary fields. Nucl. Phys. B 663, 487 (2003). arXiv:cond-mat/021216

  17. Cao, J., Yang, W., Shi, K., Wang, Y.: Off-diagonal Bethe ansatz and exact solution of a topological spin ring. Phys. Rev. Lett. 111, 137201 (2013). arXiv:1305.7328

    Article  ADS  Google Scholar 

  18. Cao, J., Yang, W., Shi, K., Wang, Y.: Off-diagonal Bethe ansatz solutions of the anisotropic spin-1/2 chains with arbitrary boundary fields. Nucl. Phys. B 877, 152 (2013). arXiv:1307.2023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Crampe, N.: Algebraic Bethe ansatz for the totally asymmetric simple exclusion process with boundaries. J. Phys. A: Math. Theor. 48, 08FT01 (2015). arXiv:1411.7954

  20. Crampe, N.: Algebraic Bethe ansatz for the XXZ Gaudin models with generic boundary. SIGMA 13, 094 (2017). arXiv:1710.08490

  21. Crampe, N., Gaboriaud, J., Poulain d’Andecy, L., Vinet, L.: Racah algebras, the diagonal centralizer of \(sl(2)\) and its Hilbert–Poincaré series. Ann. Henri Poincaré (2022) arXiv:2105.01086

  22. Crampe, N., Guo, K., Vinet, L.: Entanglement of Free Fermions on Hadamard Graphs. Nucl. Phys. B 960, 115176 (2020). arXiv:2008.04925

  23. Crampe, N., Shaaban Kabakibo, D., Vinet, L.: New realizations of algebras of the Askey–Wilson type in terms of Lie and quantum algebras. Rev. Math. Phys. 33, 2150002 (2021). arXiv:2005.06957

  24. Crampe, N., Nepomechie, R.I., Vinet, L.: Free-Fermion entanglement and orthogonal polynomials. J. Stat. Mech. 093101 (2019) arXiv:1907.00044

  25. Crampe, N., Nepomechie, R.I., Vinet, L.: Entanglement in Fermionic Chains and Bispectrality, Roman Jackiw 80th Birthday Festschrift (World Scientific, 2020). Rev. Math. Phys. 33, 2140001 (2021). arXiv:2001.10576

  26. Crampe, N., Ragoucy, E., Vinet, L., Zhedanov, A.: Truncation of the reflection algebra and the Hahn algebra. J. Phys. A: Math. Theor. 52, 35LT01 (2019). arXiv:1903.05674

  27. Crampe, N., Vinet, L., Zhedanov, A.: Heun algebras of Lie type. Proc. Am. Math. Soc. 148, 1079–1094 (2020). arXiv:1904.10643

  28. Eisler, V., Peschel, I.: Free-fermion entanglement and spheroidal functions. J. Stat. Mech.: Theory Exp. 4, P04028 (2013). arXiv:1302.2239

  29. Faddeev, L.D., Takhtadzhyan, L.A.: The quantum method of the inverse problem and the Heisenberg XYZ model. Russian Math. Surv. 34, 11 (1979)

    Article  ADS  Google Scholar 

  30. Genest, V.X., Vinet, L., Zhedanov, A.: The equitable Racah algebra from three \(su(1,1)\) algebras. J. Phys. A 45, 025203 (2013). arXiv:1309.3540

    MathSciNet  MATH  Google Scholar 

  31. Genest, V.X., Vinet, L., Zhedanov, A.: Superintegrability in two dimensions and the Racah–Wilson algebra. Lett. Math. Phys. 104, 931–952 (2014). arXiv:1307.5539

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Genest, V.X., Vinet, L., Zhedanov, A.: The Racah algebra and superintegrable models. J. Phys.: Conf. Ser. 512, 012011 (2014). arXiv:1312.3874

    Google Scholar 

  33. Granovskii, Y.A., Zhedanov, A.: Hidden symmetry of the Racah and Clebsch–Gordan problems or the quantum algebra \(sl_q(2)\). J. Group Theor. Methods Phys. 1, 161 (1993). arXiv:hep-th/9304138

    Google Scholar 

  34. Granovskii, Y.A., Zhedanov, A.: Nature of the symmetry group of the \(6j\)-symbol. J. Exp. Theor. Phys. 94, 49–54 (1988)

    MathSciNet  Google Scholar 

  35. Grünbaum, F.A., Vinet, L., Zhedanov, A.S.: Tridiagonalization and the Heun equation. J. Math. Phys. 58, 031703 (2017). arXiv:1602.04840

  36. Grünbaum, F.A., Vinet, L., Zhedanov, A.S.: Algebraic Heun operator and band-time limiting. Commun. Math. Phys. 364, 1041 (2018). arXiv:1711.07862

  37. Huang, H.-W.: Finite-dimensional modules of the universal Racah algebra and the universal additive DAHA of type \((C^\vee _1, C_1)\). J. Pure Appl. Algebra 225, 106653 (2021). arXiv:1906.09160

  38. Huand, H.-W., Bockting-Conrad, S.: Finite-dimensional irreducible modules of the Racah algebra at characteristic zero. SIGMA 16, 018–034 (2020). arXiv:1910.11446

  39. Kalnins, E.G., Kress, J.M., Miller, W., Jr.: Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory. J. Math. Phys. 46, 053509 (2005)

  40. Kalnins, E.G., Miller, W., Jr., Post, S.: Contractions of 2D 2nd order quantum superintegrable systems and the askey scheme for hypergeometric orthogonal polynomials. SIGMA 9, 057–084 (2013). arXiv:1212.4766

    MathSciNet  MATH  Google Scholar 

  41. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and their \(q\)-Analogues. Springer Monographs in Mathematics, Springer, Berlin (2010)

  42. Koornwinder, T.H.: Askey–Wilson polynomials as zonal spherical functions on the \(SU(2)\) quantum group. SIAM J. Math. Anal. 24, 795 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Landau, H.J.: An Overview of Time and Frequency Limiting, pp. 201–220. Springer, US, Boston, MA (1985)

  44. Nepomechie, R.I.: Inhomogeneous T–Q equation for the open \(XXX\) chain with general boundary terms: completeness and arbitrary spin. J. Phys. A: Math. Theor. 46, 442002 (2013). arXiv:1307.5049

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Nomura, K., Terwilliger, P.: Linear transformations that are tridiagonal with respect to both eigenbases of a Leonard pair. Linear Algebra Appl. 420, 198 (2007). arXiv:math/0605316

    Article  MathSciNet  MATH  Google Scholar 

  46. Post, S.: Models of quadratic algebras generated by superintegrable systems in 2D. SIGMA 7, 036–055 (2011). arXiv:1104.0734

    MathSciNet  MATH  Google Scholar 

  47. Slepian, D.: Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25, 379–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sklyanin, E.K., Takhtadzhyan, L.A., Faddeev, L.D.: Quantum inverse problem method. I. Theor. Math. Phys. 40, 688–706 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  49. Vinet, L., Zhedanov, A.: The Heun operator of Hahn type. Proc. Am. Math. Soc. 147, 2987–2998 (2019). arXiv:1808.00153

  50. Zhedanov, A.S.: “Hidden symmetry’’ of Askey–Wilson polynomials. Theor. Math. Phys. 89, 1146 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

PAB holds an Alexander-Graham-Bell scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC). GC thanks the Department of Physics of the Université de Montréal for partial support. NC thanks the CRM for its hospitality and are supported by the international research project AAPT of the CNRS and the ANR Project AHA ANR-18-CE40-0001. The research of LV is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Crampé.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. Our manuscript has no associated data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard, PA., Carcone, G., Crampé, N. et al. Bethe ansatz diagonalization of the Heun–Racah operator. Lett Math Phys 113, 8 (2023). https://doi.org/10.1007/s11005-023-01633-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01633-7

Keywords

Navigation