Abstract
The Lieb–Oxford inequality provides a lower bound on the Coulomb energy of a classical system of N identical charges only in terms of their one-particle density. We prove here a new estimate on the best constant in this inequality. Numerical evaluation provides the value 1.58, which is a significant improvement to the previously known value 1.64. The best constant has recently been shown to be larger than 1.44. In a second part, we prove that the constant can be reduced to 1.25 when the inequality is restricted to Hartree–Fock states. This is the first proof that the exchange term is always much lower than the full indirect Coulomb energy.
Similar content being viewed by others
Data availability statement
The manuscript has no associated data.
References
Benguria, R.D., Bley, G.A., Loss, M.: A new estimate on the indirect Coulomb energy. Int. J. Quantum Chem. 112, 1579–1584 (2012)
Buttazzo, G., Champion, T., De Pascale, L.: Continuity and estimates for multimarginal optimal transportation problems with singular costs. Appl. Math. Optim. 78, 185–200 (2018)
Buttazzo, G., De Pascale, L., Gori-Giorgi, P.: Optimal-transport formulation of electronic density-functional theory. Phys. Rev. A 85, 062502 (2012)
Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)
Becke, A.D.: Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 107, 8554–8560 (1997)
Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255–306 (2015)
Borodin, A., Serfaty, S.: Renormalized energy concentration in random matrices. Commun. Math. Phys. 320, 199–244 (2013)
Burke, K., Wagner, L.O.: DFT in a nutshell. Int. J. Quantum Chem. 113, 96–101 (2013)
Cotar, C., Petrache, M.: Equality of the jellium and uniform electron gas next-order asymptotic terms for Coulomb and Riesz potentials. ArXiv e-prints arXiv:1707.07664 (version 5) (2019)
De Pascale, L.: Optimal transport with Coulomb cost. Approximation and duality. ESAIM Math. Model. Numer. Anal. 49, 1643–1657 (2015)
Dreizler, R., Gross, E.: Density Functional Theory. Springer, Berlin (1990)
Di Marino, S., Gerolin, A., Nenna, L.: Optimal transportation theory with repulsive costs. Vol.“Topological Optimization and Optimal Transport in the Applied Sciences” of Radon Series on Computational and Applied Mathematics, ch. 9, pp. 204–256. De Gruyter (2017)
Dirac, P.A.M.: Note on exchange phenomena in the Thomas atom. Proc. Camb. Philos. Soc. 26, 376–385 (1930)
Engel, E., Dreizler, R.: Density Functional Theory: An Advanced Course, Theoretical and Mathematical Physics. Springer (2011)
Friesecke, G., Gerolin, A., Gori-Giorgi, P.: The strong-interaction limit of density functional theory (2022). ArXiV e-prints: arXiV:2202.09760. Chapter in a book “Density Functional Theory–Modeling, Mathematical Analysis, Computational Methods, and Applications” edited by Éric Cancès, Gero Friesecke
Gerber, F.: Florafauna/optimparallel-python (2020). https://github.com/florafauna/optimParallel-python__;!!NLFGqXoFfo8MMQ!p7YQE_IQ-m1hh-UB415xw3ipe_cPTzC2E4m_3apXQGRAtHdNXP-t2pYn8T8XdRIuF-OE95Kiuqqyn8W3MBako5MwgYha14eEO_c
Gerber, F., Furrer, R.: optimParallel: an r package providing a parallel version of the L-BFGS-b optimization method. R J 11, 352–358 (2019)
Gori-Giorgi, P., Seidl, M., Vignale, G.: Density-functional theory for strongly interacting electrons. Phys. Rev. Lett. 103, 166402 (2009)
Kellerer, H.G.: Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67, 399–432 (1984)
Kin-Lic Chan, G., Handy, N.C.: Optimized Lieb–Oxford bound for the exchange-correlation energy. Phys. Rev. A 59, 3075–3077 (1999)
Leblé, T.: Logarithmic, Coulomb and Riesz energy of point processes. J. Stat. Phys. 162, 887–923 (2016)
Leblé, T., Serfaty, S.: Large deviation principle for empirical fields of log and Riesz gases. Invent. Math. 210, 645–757 (2017)
Levy, M., Perdew, J.P.: Tight bound and convexity constraint on the exchange-correlation-energy functional in the low-density limit, and other formal tests of generalized-gradient approximations. Phys. Rev. B 48, 11638–11645 (1993)
Lewin, M.: Coulomb and Riesz gases: the known and the unknown. J. Math. Phys. 63, 061101 (2022). (Special collection in honor of Freeman Dyson)
Lewin, M., Lieb, E.H.: Improved Lieb–Oxford exchange-correlation inequality with gradient correction. Phys. Rev. A 91, 022507 (2015)
Lewin, M., Lieb, E.H., Seiringer, R.: Statistical mechanics of the Uniform Electron Gas. J. Éc. Polytech. Math. 5, 79–116 (2018)
Lewin, M., Lieb, E.H., Seiringer, R.: Floating Wigner crystal with no boundary charge fluctuations. Phys. Rev. B 100, 035127 (2019)
Lewin, M., Lieb, E.H., Seiringer, R.: The local density approximation in density functional theory. Pure Appl. Anal. 2, 35–73 (2019)
Lewin, M., Lieb, E.H., Seiringer, R.: Universal functionals in density functional theory. ArXiv e-prints: arXiv:1912.10424 (2020). Chapter in a book “Functional Theory–Modeling, Mathematical Analysis, Computational Methods, and Applications” edited by Éric Cancès, Gero Friesecke
Lieb, E.H.: A lower bound for Coulomb energies. Phys. Lett. A 70, 444–446 (1979)
Lieb, E.H.: Density functionals for Coulomb systems. Int. J. Quantum Chem. 24, 243–277 (1983)
Lieb, E.H., Narnhofer, H.: The thermodynamic limit for jellium. J. Stat. Phys. 12, 291–310 (1975)
Lieb, E.H., Oxford, S.: Improved lower bound on the indirect Coulomb energy. Int. J. Quantum Chem. 19, 427–439 (1980)
Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press (2010)
Mardirossian, N., Head-Gordon, M.: Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115, 2315–2372 (2017)
Odashima, M.M., Capelle, K.: How tight is the Lieb–Oxford bound? J. Chem. Phys. 127, 054106 (2007)
Onsager, L.: Electrostatic interaction of molecules. J. Phys. Chem. 43, 189–196 (1939)
Parr, R., Yang, W.: Density-Functional Theory of Atoms and Molecules, International Series of Monographs on Chemistry. Oxford University Press, USA (1994)
Perdew, J.P.: Unified theory of exchange and correlation beyond the local density approximation. In: Ziesche, P., Eschrig, H. (eds.) Electronic Structure of Solids ’91, pp. 11–20. Akademie Verlag, Berlin (1991)
Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)
Perdew, J.P., Ruzsinszky, A., Sun, J., Burke, K.: Gedanken densities and exact constraints in density functional theory. J. Chem. Phys. 140, 18A533 (2014)
Perdew, J., Sun, J.: The Lieb–Oxford lower bounds on the coulomb energy, their importance to electron density functional theory, and a conjectured tight bound on exchange. In: Frank, R.L., Laptev, A., Lewin, M., Seiringer, R. (eds.) Chapter 36 of The Physics and Mathematics of Elliott Lieb. The 90th Anniversary, vol. II, pp. 165–178. EMS Press (2022)
Peyré, G., Cuturi, M.: Computational Optimal Transport: With Applications to Data Science, vol. 11. Now Publishers Inc (2019)
Räsänen, E., Pittalis, S., Capelle, K., Proetto, C.R.: Lower bounds on the exchange-correlation energy in reduced dimensions. Phys. Rev. Lett. 102, 206406 (2009)
Räsänen, E., Seidl, M., Gori-Giorgi, P.: Strictly correlated uniform electron droplets. Phys. Rev. B 83, 195111 (2011)
Ruelle, D.: Statistical Mechanics. Rigorous Results. World Scientific, Singapore. Imperial College Press, London (1999)
Santambrogio, F.: Optimal transport for applied mathematicians. In: vol. 87 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham (2015). Calculus of variations, PDEs, and modeling
Seidl, M.: Strong-interaction limit of density-functional theory. Phys. Rev. A 60, 4387–4395 (1999)
Seidl, M., Benyahia, T., Kooi, D.P., Gori-Giorgi, P.: The Lieb–Oxford bound and the optimal transport limit of DFT. In: Frank, R.L., Laptev, A., Lewin, M., Seiringer, R. (eds.) Chapter 43 of The Physics and Mathematics of Elliott Lieb. The 90th Anniversary, vol. II, pp. 345–360. EMS Press (2022)
Seidl, M., Gori-Giorgi, P., Savin, A.: Strictly correlated electrons in density-functional theory: a general formulation with applications to spherical densities. Phys. Rev. A 75, 042511 (2007)
Seidl, M., Perdew, J.P., Levy, M.: Strictly correlated electrons in density-functional theory. Phys. Rev. A 59, 51–54 (1999)
Soshnikov, A.: Determinantal random point fields. Uspekhi Mat. Nauk 55, 107–160 (2000)
Sun, J., Perdew, J.P., Ruzsinszky, A.: Semilocal density functional obeying a strongly tightened bound for exchange. Proc. Natl. Acad. Sci. USA 112, 685–689 (2015)
Sun, J., Ruzsinszky, A., Perdew, J.P.: Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015)
Sun, J., Remsing, R.C., Zhang, Y., Sun, Z., Ruzsinszky, A., Peng, H., Yang, Z., Paul, A., Waghmare, U., Wu, X., Klein, M.L., Perdew, J.P.: Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat. Chem. 8, 831–836 (2016)
Tao, J., Perdew, J.P., Staroverov, V.N., Scuseria, G.E.: Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401 (2003)
Villani, C.: Optimal transport. In: Old and New, Vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2009)
Wigner, E.P.: On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934)
Acknowledgements
We would like to thank David Gontier for useful advice on the numerical simulations. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreements MDFT No. 725528 of M.L. and AQUAMS No. 694227 of R.S.). We are thankful for the hospitality of the Institut Henri Poincaré in Paris, where part of this work was done.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article belongs to the themed collection: Mathematical Physics and Numerical Simulation of Many-Particle Systems; V. Bach and L. Delle Site (eds.)
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lewin, M., Lieb, E.H. & Seiringer, R. Improved Lieb–Oxford bound on the indirect and exchange energies. Lett Math Phys 112, 92 (2022). https://doi.org/10.1007/s11005-022-01584-5
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11005-022-01584-5