Skip to main content

Advertisement

Log in

Improved Lieb–Oxford bound on the indirect and exchange energies

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Lieb–Oxford inequality provides a lower bound on the Coulomb energy of a classical system of N identical charges only in terms of their one-particle density. We prove here a new estimate on the best constant in this inequality. Numerical evaluation provides the value 1.58, which is a significant improvement to the previously known value 1.64. The best constant has recently been shown to be larger than 1.44. In a second part, we prove that the constant can be reduced to 1.25 when the inequality is restricted to Hartree–Fock states. This is the first proof that the exchange term is always much lower than the full indirect Coulomb energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

The manuscript has no associated data.

References

  1. Benguria, R.D., Bley, G.A., Loss, M.: A new estimate on the indirect Coulomb energy. Int. J. Quantum Chem. 112, 1579–1584 (2012)

    Article  Google Scholar 

  2. Buttazzo, G., Champion, T., De Pascale, L.: Continuity and estimates for multimarginal optimal transportation problems with singular costs. Appl. Math. Optim. 78, 185–200 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buttazzo, G., De Pascale, L., Gori-Giorgi, P.: Optimal-transport formulation of electronic density-functional theory. Phys. Rev. A 85, 062502 (2012)

    Article  ADS  Google Scholar 

  4. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  ADS  Google Scholar 

  5. Becke, A.D.: Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 107, 8554–8560 (1997)

    Article  ADS  Google Scholar 

  6. Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2, 255–306 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borodin, A., Serfaty, S.: Renormalized energy concentration in random matrices. Commun. Math. Phys. 320, 199–244 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Burke, K., Wagner, L.O.: DFT in a nutshell. Int. J. Quantum Chem. 113, 96–101 (2013)

    Article  Google Scholar 

  9. Cotar, C., Petrache, M.: Equality of the jellium and uniform electron gas next-order asymptotic terms for Coulomb and Riesz potentials. ArXiv e-prints arXiv:1707.07664 (version 5) (2019)

  10. De Pascale, L.: Optimal transport with Coulomb cost. Approximation and duality. ESAIM Math. Model. Numer. Anal. 49, 1643–1657 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dreizler, R., Gross, E.: Density Functional Theory. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  12. Di Marino, S., Gerolin, A., Nenna, L.: Optimal transportation theory with repulsive costs. Vol.“Topological Optimization and Optimal Transport in the Applied Sciences” of Radon Series on Computational and Applied Mathematics, ch. 9, pp. 204–256. De Gruyter (2017)

  13. Dirac, P.A.M.: Note on exchange phenomena in the Thomas atom. Proc. Camb. Philos. Soc. 26, 376–385 (1930)

    Article  ADS  MATH  Google Scholar 

  14. Engel, E., Dreizler, R.: Density Functional Theory: An Advanced Course, Theoretical and Mathematical Physics. Springer (2011)

  15. Friesecke, G., Gerolin, A., Gori-Giorgi, P.: The strong-interaction limit of density functional theory (2022). ArXiV e-prints: arXiV:2202.09760. Chapter in a book “Density Functional Theory–Modeling, Mathematical Analysis, Computational Methods, and Applications” edited by Éric Cancès, Gero Friesecke

  16. Gerber, F.: Florafauna/optimparallel-python (2020). https://github.com/florafauna/optimParallel-python__;!!NLFGqXoFfo8MMQ!p7YQE_IQ-m1hh-UB415xw3ipe_cPTzC2E4m_3apXQGRAtHdNXP-t2pYn8T8XdRIuF-OE95Kiuqqyn8W3MBako5MwgYha14eEO_c

  17. Gerber, F., Furrer, R.: optimParallel: an r package providing a parallel version of the L-BFGS-b optimization method. R J 11, 352–358 (2019)

    Article  Google Scholar 

  18. Gori-Giorgi, P., Seidl, M., Vignale, G.: Density-functional theory for strongly interacting electrons. Phys. Rev. Lett. 103, 166402 (2009)

    Article  ADS  Google Scholar 

  19. Kellerer, H.G.: Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67, 399–432 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kin-Lic Chan, G., Handy, N.C.: Optimized Lieb–Oxford bound for the exchange-correlation energy. Phys. Rev. A 59, 3075–3077 (1999)

    Article  ADS  Google Scholar 

  21. Leblé, T.: Logarithmic, Coulomb and Riesz energy of point processes. J. Stat. Phys. 162, 887–923 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Leblé, T., Serfaty, S.: Large deviation principle for empirical fields of log and Riesz gases. Invent. Math. 210, 645–757 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Levy, M., Perdew, J.P.: Tight bound and convexity constraint on the exchange-correlation-energy functional in the low-density limit, and other formal tests of generalized-gradient approximations. Phys. Rev. B 48, 11638–11645 (1993)

    Article  ADS  Google Scholar 

  24. Lewin, M.: Coulomb and Riesz gases: the known and the unknown. J. Math. Phys. 63, 061101 (2022). (Special collection in honor of Freeman Dyson)

  25. Lewin, M., Lieb, E.H.: Improved Lieb–Oxford exchange-correlation inequality with gradient correction. Phys. Rev. A 91, 022507 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Lewin, M., Lieb, E.H., Seiringer, R.: Statistical mechanics of the Uniform Electron Gas. J. Éc. Polytech. Math. 5, 79–116 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lewin, M., Lieb, E.H., Seiringer, R.: Floating Wigner crystal with no boundary charge fluctuations. Phys. Rev. B 100, 035127 (2019)

    Article  ADS  Google Scholar 

  28. Lewin, M., Lieb, E.H., Seiringer, R.: The local density approximation in density functional theory. Pure Appl. Anal. 2, 35–73 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lewin, M., Lieb, E.H., Seiringer, R.: Universal functionals in density functional theory. ArXiv e-prints: arXiv:1912.10424 (2020). Chapter in a book “Functional Theory–Modeling, Mathematical Analysis, Computational Methods, and Applications” edited by Éric Cancès, Gero Friesecke

  30. Lieb, E.H.: A lower bound for Coulomb energies. Phys. Lett. A 70, 444–446 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  31. Lieb, E.H.: Density functionals for Coulomb systems. Int. J. Quantum Chem. 24, 243–277 (1983)

    Article  Google Scholar 

  32. Lieb, E.H., Narnhofer, H.: The thermodynamic limit for jellium. J. Stat. Phys. 12, 291–310 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Lieb, E.H., Oxford, S.: Improved lower bound on the indirect Coulomb energy. Int. J. Quantum Chem. 19, 427–439 (1980)

    Article  Google Scholar 

  34. Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press (2010)

  35. Mardirossian, N., Head-Gordon, M.: Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115, 2315–2372 (2017)

    Article  ADS  Google Scholar 

  36. Odashima, M.M., Capelle, K.: How tight is the Lieb–Oxford bound? J. Chem. Phys. 127, 054106 (2007)

    Article  ADS  Google Scholar 

  37. Onsager, L.: Electrostatic interaction of molecules. J. Phys. Chem. 43, 189–196 (1939)

    Article  Google Scholar 

  38. Parr, R., Yang, W.: Density-Functional Theory of Atoms and Molecules, International Series of Monographs on Chemistry. Oxford University Press, USA (1994)

  39. Perdew, J.P.: Unified theory of exchange and correlation beyond the local density approximation. In: Ziesche, P., Eschrig, H. (eds.) Electronic Structure of Solids ’91, pp. 11–20. Akademie Verlag, Berlin (1991)

    Google Scholar 

  40. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  41. Perdew, J.P., Ruzsinszky, A., Sun, J., Burke, K.: Gedanken densities and exact constraints in density functional theory. J. Chem. Phys. 140, 18A533 (2014)

    Article  Google Scholar 

  42. Perdew, J., Sun, J.: The Lieb–Oxford lower bounds on the coulomb energy, their importance to electron density functional theory, and a conjectured tight bound on exchange. In: Frank, R.L., Laptev, A., Lewin, M., Seiringer, R. (eds.) Chapter 36 of The Physics and Mathematics of Elliott Lieb. The 90th Anniversary, vol. II, pp. 165–178. EMS Press (2022)

  43. Peyré, G., Cuturi, M.: Computational Optimal Transport: With Applications to Data Science, vol. 11. Now Publishers Inc (2019)

  44. Räsänen, E., Pittalis, S., Capelle, K., Proetto, C.R.: Lower bounds on the exchange-correlation energy in reduced dimensions. Phys. Rev. Lett. 102, 206406 (2009)

    Article  ADS  Google Scholar 

  45. Räsänen, E., Seidl, M., Gori-Giorgi, P.: Strictly correlated uniform electron droplets. Phys. Rev. B 83, 195111 (2011)

    Article  ADS  Google Scholar 

  46. Ruelle, D.: Statistical Mechanics. Rigorous Results. World Scientific, Singapore. Imperial College Press, London (1999)

  47. Santambrogio, F.: Optimal transport for applied mathematicians. In: vol. 87 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham (2015). Calculus of variations, PDEs, and modeling

  48. Seidl, M.: Strong-interaction limit of density-functional theory. Phys. Rev. A 60, 4387–4395 (1999)

    Article  ADS  Google Scholar 

  49. Seidl, M., Benyahia, T., Kooi, D.P., Gori-Giorgi, P.: The Lieb–Oxford bound and the optimal transport limit of DFT. In: Frank, R.L., Laptev, A., Lewin, M., Seiringer, R. (eds.) Chapter 43 of The Physics and Mathematics of Elliott Lieb. The 90th Anniversary, vol. II, pp. 345–360. EMS Press (2022)

  50. Seidl, M., Gori-Giorgi, P., Savin, A.: Strictly correlated electrons in density-functional theory: a general formulation with applications to spherical densities. Phys. Rev. A 75, 042511 (2007)

    Article  ADS  Google Scholar 

  51. Seidl, M., Perdew, J.P., Levy, M.: Strictly correlated electrons in density-functional theory. Phys. Rev. A 59, 51–54 (1999)

    Article  ADS  Google Scholar 

  52. Soshnikov, A.: Determinantal random point fields. Uspekhi Mat. Nauk 55, 107–160 (2000)

    MathSciNet  MATH  Google Scholar 

  53. Sun, J., Perdew, J.P., Ruzsinszky, A.: Semilocal density functional obeying a strongly tightened bound for exchange. Proc. Natl. Acad. Sci. USA 112, 685–689 (2015)

    Article  ADS  Google Scholar 

  54. Sun, J., Ruzsinszky, A., Perdew, J.P.: Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015)

    Article  ADS  Google Scholar 

  55. Sun, J., Remsing, R.C., Zhang, Y., Sun, Z., Ruzsinszky, A., Peng, H., Yang, Z., Paul, A., Waghmare, U., Wu, X., Klein, M.L., Perdew, J.P.: Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat. Chem. 8, 831–836 (2016)

    Article  Google Scholar 

  56. Tao, J., Perdew, J.P., Staroverov, V.N., Scuseria, G.E.: Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401 (2003)

    Article  ADS  Google Scholar 

  57. Villani, C.: Optimal transport. In: Old and New, Vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2009)

  58. Wigner, E.P.: On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank David Gontier for useful advice on the numerical simulations. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreements MDFT No. 725528 of M.L. and AQUAMS No. 694227 of R.S.). We are thankful for the hospitality of the Institut Henri Poincaré in Paris, where part of this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Lewin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the themed collection: Mathematical Physics and Numerical Simulation of Many-Particle Systems; V. Bach and L. Delle Site (eds.)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewin, M., Lieb, E.H. & Seiringer, R. Improved Lieb–Oxford bound on the indirect and exchange energies. Lett Math Phys 112, 92 (2022). https://doi.org/10.1007/s11005-022-01584-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01584-5

Keywords

Mathematics Subject Classification

Navigation