Skip to main content
Log in

A Hermitian TQFT from a non-semisimple category of quantum \({\mathfrak {sl}(2)}\)-modules

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We endow a non-semisimple category of modules of unrolled quantum \({\mathfrak {sl}(2)}\) with a Hermitian structure. We also prove that the CGP TQFT constructed in arXiv:1202.3553 using this category is Hermitian. This gives rise to projective representations of the mapping class group in the group of indefinite unitary matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. We use an equivalent definition to the one Turaev uses for \({\mathop {{\text {ev}}}\limits ^{\longrightarrow }}_V^{\dagger }\).

References

  1. Bender, C.: Introduction to \({\cal{PT} }\)-symmetric quantum theory. Contemp. Phys. 46(4), 277–292 (2005). arXiv:quant-ph/0501052

    Article  ADS  Google Scholar 

  2. Blanchet, C., Costantino, F., Geer, N., Patureau-Mirand, B.: Non-semi-simple TQFTs, Reidemeister torsion and Kashaev’s invariants. Adv. Math. 301, 1–78 (2016). arXiv:1404.7289

    Article  MathSciNet  Google Scholar 

  3. Brown, J., Dimofte, T., Garaoufalidis, S., Geer, N.: The ADO invariants are a q-holonomic family (2005). arXiv:2005.08176

  4. Costantino, F., Geer, N., Patureau-Mirand, B.: Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories. J. Topol. 7(4), 1005–1053 (2014). arXiv:1202.3553

    Article  MathSciNet  Google Scholar 

  5. Costantino, F., Geer, N., Patureau-Mirand, B.: Some remarks on the unrolled quantum group of \({\mathfrak{s} }{\mathfrak{l} }(2)\). J. Pure Appl. Algebra 219(8), 3238–3262 (2015). arXiv:1406.0410

    Article  MathSciNet  Google Scholar 

  6. Dirac, P.A.M.: Bakerian lecture—the physical interpretation of quantum mechanics. Proc. R. Soc. Lond. 180, 1–40 (1942)

    ADS  MATH  Google Scholar 

  7. Freedman, M., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum computation, Bull. Am. Math. Soc. (N.S.) 40(1), 31–38 (2003). Mathematical challenges of the 21st century (Los Angeles, CA, 2000)

  8. Geer, N., Kujawa, B., Patureau-Mirand, J.: Generalized trace and modified dimension functions on ribbon categories. Selecta Math. (N.S.) 17(2), 453–504 (2011). arXiv:1001.0985

    Article  MathSciNet  Google Scholar 

  9. Geer, N., Kujawa, J., Patureau-Mirand, B.: M-traces in (non-unimodular) pivotal categories (2018). arXiv:1809.00499

  10. Geer, N., Lauda, A.D., Patureau-Mirand, B., Sussan, J.: Pseudo-Hermitian Levin-Wen models from non-semisimple TQFTs (2021). arXiv:2108.10798

  11. Kádár, Z., Marzuoli, Z. A., Rasetti, M.: Microscopic description of 2D topological phases, duality, and 3D state sums. Adv. Math. Phys. (2010), Art. ID 671039, 18. arXiv:0907.3724

  12. Kirillov, A.: On an inner product in modular tensor categories. J. Am. Math. Soc. 9(4), 1135–1169 (1996)

    Article  MathSciNet  Google Scholar 

  13. Kirillov, A.: String-net model of turaev-viro invariants (2011). arXiv:1106.6033

  14. Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003). arXiv:quant-ph/9707021

    Article  ADS  MathSciNet  Google Scholar 

  15. Koenig, R., Kuperberg, B.W., Reichardt, G.: Quantum computation with Turaev-Viro codes. Ann. Phys. 325(12), 2707–2749 (2010). arXiv:1002.2816

    Article  ADS  MathSciNet  Google Scholar 

  16. Levin, M., Wen, X.: String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005)

    Article  ADS  Google Scholar 

  17. Mostafazadeh, A.: Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum. J. Math. Phys. 43(5), 2814 (2002). arXiv:math-ph/0110016

    Article  ADS  MathSciNet  Google Scholar 

  18. Mostafazadeh, A.: Time-dependent pseudo-hermitian hamiltonians and a hidden geometric aspect of quantum mechanics. Entropy 22(4), 471 (2020). arXiv:2004.05254

    Article  ADS  MathSciNet  Google Scholar 

  19. Murakami, J.: Colored Alexander invariants and cone-manifolds. Osaka J. Math. 45(2), 541–564 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Nayak, C., Simon, S., Stern, A., Freedman, M., Das Sarma, S.: Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 80(3), 1083–1159 (2008). arXiv:0707.1889

    Article  ADS  MathSciNet  Google Scholar 

  21. Ohtsuki, T.: Quantum invariants, Series on Knots and Everything, vol. 29. World Scientific Publishing Co., Inc., River Edge, NJ, 2002, A study of knots, 3-manifolds, and their sets

  22. Pauli, W.: On Dirac’s new method of field quantization. Rev. Mod. Phys. 15, 175 (1943)

    Article  ADS  MathSciNet  Google Scholar 

  23. Snyder, N., Tingley, P.: The half-twist for \(U_q({\mathfrak{g}} )\) representations. Algebra Number Theory 3(7), 809–834 (2009)

    Article  MathSciNet  Google Scholar 

  24. Turaev, V.G.: Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics. vol. 18, De Gruyter, Berlin, Third edition [of MR1292673] (2016)

  25. Wenzl, H.: \(C^*\) tensor categories from quantum groups. J. Am. Math. Soc. 11(2), 261–282 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

N.G. is supported by NSF DMS-1664387. A.D.L. is partially supported by NSF Grant DMS-1902092 and Army Research Office W911NF-20-1-0075. J.S. is partially supported by the NSF Grant DMS-1807161 and PSC CUNY Award 64012-00 52.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron D. Lauda.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geer, N., Lauda, A.D., Patureau-Mirand, B. et al. A Hermitian TQFT from a non-semisimple category of quantum \({\mathfrak {sl}(2)}\)-modules. Lett Math Phys 112, 74 (2022). https://doi.org/10.1007/s11005-022-01570-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01570-x

Keywords

Mathematics Subject Classification

Navigation