Skip to main content
Log in

Existence and stability of standing waves for nonlinear Schrödinger equations with a critical rotational speed

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the existence and stability of standing waves associated with the Cauchy problem for the nonlinear Schrödinger equation (NLS) with a critical rotational speed and an axially symmetric harmonic potential. This equation arises as an effective model describing the attractive Bose–Einstein condensation in a magnetic trap rotating with an angular velocity. By viewing the equation as NLS with a constant magnetic field and with (or without) a partial harmonic confinement, we establish the existence and orbital stability of prescribed mass standing waves for the equation with mass-subcritical, mass-critical, and mass-supercritical nonlinearities. Our result extends a recent work of Bellazzini et al. (Commun Math Phys 353(1):229–251, 2017), where the existence and stability of standing waves for the supercritical NLS with a partial confinement were established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Notes

  1. Since we consider the rotation on the \((x_1,x_2)\)-plane, the rotation speed should be compared only with the trapping frequencies in the \(x_1\) and \(x_2\) directions.

References

  1. Aftalion, A.: Vortices in Bose–Einstein condensates. In: Progress in Nonlinear Differential Equations and their Applications, vol. 67. Birkhäuser Boston, Inc., Boston (2006)

  2. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  3. Antonelli, P., Marahrens, D., Sparber, C.: On the Cauchy problem for nonlinear Schrödinger equations with rotation. Discrete Contin. Dyn. Syst. 32(3), 703–715 (2012)

    Article  MathSciNet  Google Scholar 

  4. Antonelli, P., Carles, R., Drumond Silva, J.: Scattering for nonlinear Schrödinger equation under partial harmonic confinement. Commun. Math. Phys. 334(1), 367–396 (2015)

    Article  ADS  Google Scholar 

  5. Arbunich, J., Nenciu, I., Sparber, C.: Stability and instability properties of rotating Bose–Einstein condensates. Lett. Math. Phys. 109(6), 1415–1432 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ardila, A.H., Hajaiej, H.: Global well-posedness, blow-up and stability of standing waves for supercritical NLS with rotation. J. Dyn. Differ. Equ. (2021). https://doi.org/10.1007/s10884-021-09976-2

    Article  Google Scholar 

  7. Bao, W., Wang, H., Markowich, P.A.: Ground, symmetric and central vortex states in rotating Bose–Einstein condensates. Commun. Math. Sci. 3(1), 57–88 (2005)

    Article  MathSciNet  Google Scholar 

  8. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6(1), 1–135 (2013)

    Article  MathSciNet  Google Scholar 

  9. Basharat, N., Hajaiej, H., Hu, Y., Zheng, S., Threshold for blowup and stability for nonlinear Schrödinger equation with rotation. Preprint, arXiv:2002.04722

  10. Bellazzini, J., Boussaïd, N., Jeanjean, L., Visciglia, N.: Existence and stability of standing waves for supercritical NLS with a partial confinement. Commun. Math. Phys. 353(1), 229–251 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  12. Cai, Y.: Mathematical theory and numerical methods for the Gross-Piatevskii equations and applications. Ph.D. Thesis, National Universtiy of Singapore (2011)

  13. Carles, R., Ardila, A.H.: Global dynamics below the ground states for NLS under partial harmonic confinement. Commun. Math. Sci. 19(4), 993–1032 (2021)

    Article  MathSciNet  Google Scholar 

  14. Carles, R., Dinh, V.D., Hajaiej, H.: On stability of rotational 2D binary Bose–Einstein condensates. Annales de Faculté des Sciences de Toulouse Mathématiques. arXiv:2010.06862

  15. Castin, Y., Dum, R.: Bose–Einstein condensates with vortices in rotating traps. Eur. Phys. J. D 7, 399–412 (1999)

    Article  ADS  Google Scholar 

  16. Cazenave, T., Esteban, M.J.: On the stability of stationary states for nonlinear Schrödinger equations with an external magnetic field, language=English, with Portuguese summary. Mat. Apl. Comput. 7(3), 155–168 (1988)

    MathSciNet  MATH  Google Scholar 

  17. Cazenave, T.: Semilinear Schrödinger equations. In: Courant Lecture Notes in Mathematics, vol.10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (2003)

  18. Davis, K.B., Mewes, M.O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3369 (1995)

    Google Scholar 

  19. Dinh, V.D.: Remarks on nonlinear Schrödinger equations arising on rotational Bose–Einstein condensates. Nonlinear Anal. 214, 112587 (2022)

    Article  Google Scholar 

  20. Dinh, V.D.: On the stability of Bose–Einstein Condensation with a toroidal trap (in progress)

  21. Esteban, M.J., Lions, P.L.: Stationary solutions of nonlinear Schrödinger equations with an external magnetic field. In: Partial Differential Equations and the Calculus of Variations, vol. I, Progr. Nonlinear Differential Equations Appl., vol. 1, pp. 401–449. Birkhäuser Boston, Boston (1989)

  22. Feder, D.L., Clark, W., Schneider, B.I.: Nucleation of vortex arrays in rotating anisotropic Bose–Einstein condensates. Phys. Rev. A 61(1), 011601 (1999)

    Article  ADS  Google Scholar 

  23. Fetter, A.L.: Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81(2), 647–691 (2009)

    Article  ADS  Google Scholar 

  24. García-Ripoll, J.J., Perez-Garcia, V.M.: Stability of vortices in inhomogeneous Bose condensates subject to rotation: a three-dimensional analysis. Phys. Rev. A 60(6), 4864 (1999)

    Article  ADS  Google Scholar 

  25. Gonçalves Ribeiro, J.M.: Finite time blow-up for some nonlinear Schrödinger equations with an external magnetic field. Nonlinear Anal. 16(11), 941–948 (1991)

    Article  MathSciNet  Google Scholar 

  26. Guo, Y., Luo, Y., Yang, W.: The nonexistence of vortices for rotating Bose–Einstein condensates with attractive interactions. Arch. Ration. Mech. Anal. 238(3), 1231–1281 (2020)

    Article  MathSciNet  Google Scholar 

  27. Guo, Y.: The nonexistence of vortices for rotating Bose-Einstein condensates in non-radially symmetric traps. Preprint, arXiv:2010.05592

  28. Guo, Y., Luo, Y., Peng, S.: Local uniqueness of ground states for rotating Bose–Einstein condensates with attractive interactions. Calc. Var. Partial Differ. Equ. 60(6), 1–27 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Guo, Y., Luo, Y., Peng, S.: Existence and asymptotic behavior of ground states for rotating Bose–Einstein condensates. Preprint, arXiv:2106.14369

  30. Hao, C., Hsiao, L., Li, H.: Global well posedness for the Gross-Pitaevskii equation with an angular momentum rotational term. Math. Methods Appl. Sci. 31(6), 655–664 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  31. Hao, C., Hsiao, L., Li, H.: Global well posedness for the Gross-Pitaevskii equation with an angular momentum rotational term in three dimensions. J. Math. Phys. 48(10), 102105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. Ignat, R., Millot, V.: The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate. J. Funct. Anal. 233, 260–306 (2006)

    Article  MathSciNet  Google Scholar 

  33. Lewin, M., Nam, P.T., Rougerie, N.: Blow-up profile of rotating 2D focusing Bose gases. In: Cadamuro, D., Duell, M., Dybalski, W., Simonella, S. (eds.) Macroscopic Limits of Quantum Systems, Springer Proceedings in Mathematics & Statistics, vol. 270, no. 1562 (2018)

  34. Lieb, E., Seiringer, R.: Derivation of the Gross-Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264, 505–537 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  35. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  36. Lü, Z., Liu, Z.: Sharp thresholds of Bose–Einstein condensates with an angular momentum rotational term. J. Appl. Math. Inform. 29(3–4), 901–908 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Luo, X., Yang, T.: Multiplicity, asymptotics and stability of standing waves for nonlinear Schrödinger equation with rotation. J. Differ. Equ. 304, 326–347 (2021)

    Article  ADS  Google Scholar 

  38. Madison, K.W., Chevy, F., Wohlleben, W., Dalibard, J.: Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 84, 2498 (2000)

    Article  Google Scholar 

  39. Seiringer, R.: Gross-Pitaevskii theory of the rotating Bose gas. Commun. Math. Phys. 229, 491–509 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  40. Williams, J.E., Hooand, M.J.: Preparing topological states of a Bose–Einstein condensate. Nature 401, 568 (1999)

    Article  ADS  Google Scholar 

  41. Wei, J., Wu, Y.: On some nonlinear Schrödinger equations in ${R}^N$. Preprint arXiv:2112.04746

  42. Yajima, K.: Schrödinger evolution equations with magnetic fields. J. Anal. Math. 56, 29–76 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Programme (Grant agreement CORFRONMAT No. 758620, PI: Nicolas Rougerie). The author would like to express his deep gratitude to his wife—Uyen Cong for her encouragement and support. He also would like to thank the reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Duong Dinh.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinh, V.D. Existence and stability of standing waves for nonlinear Schrödinger equations with a critical rotational speed. Lett Math Phys 112, 53 (2022). https://doi.org/10.1007/s11005-022-01549-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01549-8

Keywords

Mathematics Subject Classification

Navigation