Skip to main content
Log in

Spectral properties of the Dirac operator coupled with \(\delta \)-shell interactions

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset {{\mathbb {R}}}^3\) be an open set. We study the spectral properties of the free Dirac operator \( \mathcal {H} :=- i \alpha \cdot \nabla + m\beta \) coupled with the singular potential \(V_\kappa =(\epsilon I_4 +\mu \beta + \eta (\alpha \cdot N))\delta _{\partial \Omega }\), where \(\kappa =(\epsilon ,\mu ,\eta )\in {{\mathbb {R}}}^3\). The open set \(\Omega \) can be either a \(\mathcal {C}^2\)-bounded domain or a locally deformed half-space. In both cases, self-adjointness is proved and several spectral properties are given. In particular, we give a complete description of the essential spectrum of \( \mathcal {H}+V_\kappa \) in the case of a locally deformed half-space, for the so-called critical combinations of coupling constants. Finally, we introduce a new model of Dirac operators with \(\delta \)-interactions and deal with its spectral properties. More precisely, we study the coupling \(\mathcal {H}_{\zeta ,\upsilon }=\mathcal {H}+ \left( -i\zeta \alpha _1\alpha _2\alpha _3+ i\upsilon \beta \left( \alpha \cdot N\right) \right) \delta _{\partial \Omega }\), with \(\zeta ,\upsilon \in {{\mathbb {R}}}\). In particular, we show that \(\mathcal {H}_{ 0,\pm 2}\) is essentially self-adjoint and generates confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Arrizabalaga, N., Mas, A., Vega, L.: Shell interactions for Dirac operators. J. Math. Pures Appl. (9) 102, 617–639 (2014)

    Article  MathSciNet  Google Scholar 

  2. Arrizabalaga, N., Mas, A., Vega, L.: Shell interactions for Dirac operators: on the point spectrum and the confinement. SIAMJ. Math. Anal. 47, 1044–1069 (2015)

    Article  MathSciNet  Google Scholar 

  3. Arrizabalaga, N., Mas, A., Vega, L.: An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators. Commun. Math. Phys. 344(2), 483–505 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  4. Axelsson, A., Grognard, R., Hogan, J., McIntosh, A.: Harmonic analysis of Dirac operators on Lipschitz domains. In: Brackx, F., Chisholm, J., Soucek, V. (eds.), Clifford Analysis and Its Applications, Proceedings of the NATA Advanced Research Workshop, Kluwer Academic Publishers, The Netherlands, pp. 231–246 (2001)

  5. Behrndt, J., Exner, P., Holzmann, M., Lotoreichik, V.: On the spectral properties of Dirac operators with electrostatic \(\delta \)-shell interaction. J. Math. Pures Appl. 9(111), 47–78 (2018)

    Article  MathSciNet  Google Scholar 

  6. Behrndt, J., Exner, P., Holzmann, M., Lotoreichik, V.: On Dirac operators in \({\mathbb{R}}^3\) with electrostatic and Lorentz scalar \(\delta \)-shell interactions. Quantum Stud. Math. Found. 6, 295–314 (2019)

    Article  MathSciNet  Google Scholar 

  7. Behrndt, J., Holzmann, M.: On Dirac operators with electrostatic \(\delta \)–shell interactions of critical strength. J. Spectr. Theory 10, 147 (2020)

    Article  MathSciNet  Google Scholar 

  8. Behrndt, J., Holzmann, M., Mas, A.: Self-adjoint Dirac operators on domains in \({\mathbb{R}}^3\). Ann. Henri Poincaré 21, 2681–2735 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. Behrndt, J., Holzmann, M., Ourmèires-Bonafos, T., Pankrashkin, K.: Two-dimensional Dirac operators with singular interactions supported on closed curves. J. Funct. Anal., 279, p. 46. Id/No 108700 (2020)

  10. Behrndt, J., Holzmann, M., Tušek, M.: Spectral transition for Dirac operators with electrostatic \(\delta \)-shell potential supported on the straight line. arXiv preprint (2021). arXiv:2107.01156

  11. Behrndt, J., Hassi, S., de Snoo, H.S.V.: Boundary Value Problems, Weyl Functions, and Differential Operators, Monographs in Mathematics, Vol. 108. Birkhäuser/-Springer, Cham, vii+772 pp. ISBN 978-3-030-36713-8 (2020)

  12. Benhellal, B.: Spectral analysis of Dirac operators with singular interactions supported on the boundaries of rough domains. J. Math. Phys. 63, 011507 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  13. Brüning, J., Geyler, V., Pankrashkin, K.: Spectra of self-adjoint extensions and applications to solvable Schrödinger operators. Rev. Math. Phys. 20, 1–70 (2008)

    Article  MathSciNet  Google Scholar 

  14. Cassano, B., Lotoreichik, V., Mas, A., Tušek, M.: General \(\delta \)-Shell Interactions for the two-dimensional Dirac Operator: Self-adjointness and Approximation. arXiv preprint arXiv:2102.09988 (2021)

  15. Chodos, A., Jaffe, R.L., Johnson, K., Thorn, C.B., Weisskopf, V.F.: New extended model of hadrons. Phys. Rev. D 9(12), 3471–3495 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  16. Dittrich, J., Exner, P., Šeba, P.: Dirac operators with a spherically \(\delta \)–shell interactions. J. Math. Phys. 30, 2875–2882 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  17. Dominguez-Adame, F.: Exact solutions of the Dirac equation with surface delta interactions. J. Phys. A Math. Gen. 23, 1993–1999 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  18. Edmunds, D.E., Evans, W.D.: Elliptic Differential Operators and Spectral Analysis. Springer Monographs in Mathematics. Springer, Cham (2018)

    Book  Google Scholar 

  19. Exner, P., Kondej, S., Lotoreichik, V.: Asymptotics of the bound state induced by \(\delta \)-interaction supported on a weakly deformed plane. J. Math. Phys., 59(1):013501, 17 (2018)

  20. Folland, G.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  21. Holzmann, M.: A note on the three dimensional Dirac operator with zigzag type boundary conditions. Complex Anal. Oper. Theory 15, 15 (2021)

    Article  MathSciNet  Google Scholar 

  22. Holzmann, M., Ourmèires-Bonafos, T., Pankrashkin, K.: Dirac operators with Lorentz scalar shell interactions. Rev. Math. Phys. 30, 1850013 (2018)

    Article  MathSciNet  Google Scholar 

  23. Johnson, K.: The MIT bag model. Acta Phys. Pol. B 6, 865 (1975)

    Google Scholar 

  24. Mas, A.: Dirac operators, shell interactions, and discontinuous gauge functions across the boundary. J. Math. Phys. 58, 022301 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Mas, A., Pizichillo, F.: The relativistic spherical \(\delta \)–shell interaction in \({\mathbb{R}}^3\): spectrum and approximation. Journal of Mathematical Physics 58, 082102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. Mas, A., Pizichillo, F.: Klein’s Paradox and the relativistic \(\delta \)–shell interaction in \({\mathbb{R}}^3\). Anal. PDE 11(3), 705–744 (2018)

  27. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  28. Medková, D.: The Laplace Equation: Boundary Value Problems on Bounded and Unbounded Lipschitz Domains. Springer, Cham (2018)

    Book  Google Scholar 

  29. Ourmères-Bonafos, T., Vega, L.: A strategy for self-adjointness of Dirac operators: applications to the MIT bag model and \(\delta \)–shell interactions. Publications matemàtiques, 62(2) (2018)

  30. Ourmiéres-Bonafos, T., Pizzichillo, F.: Dirac operators and shell interactions: a survey. In: Mathematical Challenges of Zero-Range Physics, A. Michelangeli, ed.,Cham, Springer International Publishing, pp. 105–131 (2021)

  31. Robert, D.: Autour de l’approximation semi-classique, Progress in Mathematics, 68. Birkhäuser Boston Inc, Boston (1987)

    Google Scholar 

  32. Shabani, J., Vyabandi, A.: Exactly solvable models of relativistic \(\delta \)–sphere interactions in quantum mechanics. J. Math. Phys. 43, 6064–6084 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  33. Teschl, G.: Mathematical Methods in Quantum Mechanics. Graduate Studies in Mathematics, With applications to Schrödinger Operators. American Mathematical Society, Providence (2014)

    MATH  Google Scholar 

  34. Thaller, B.: The Dirac Equation, Text and Monographs in Physics. Springer, Berlin (1992)

Download references

Acknowledgements

I would like to thank my PhD supervisors Vincent Bruneau and Luis Vega for their encouragement and for their precious discussions and advices during the preparation of this paper. I would also like to thank the referees for helpful comments and remarks that led to an improvement of the manuscript. This work was supported by the ERC-2014-ADG Project HADE Id. 669689 (European Research Council) and by the Spanish State Research Agency through BCAM Severo Ochoa excellence accreditation SEV-2017-0718.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badreddine Benhellal.

Ethics declarations

Conflict of interest

The author has no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benhellal, B. Spectral properties of the Dirac operator coupled with \(\delta \)-shell interactions. Lett Math Phys 112, 52 (2022). https://doi.org/10.1007/s11005-022-01544-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-022-01544-z

Keywords

Mathematics Subject Classification

Navigation