Skip to main content
Log in

Pointwise decay for semilinear wave equations on Kerr spacetimes

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this article, we prove pointwise bounds for solutions to the semilinear wave equation with integer powers \(p\ge 3\) on Kerr backgrounds with small angular momentum and small initial data. We expect that the bounds proved in this paper are optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In Kerr one can actually control a stronger norm, where the r-derivative does not degenerate at the trapped set. However, we do not need the stronger norm in this paper.

References

  1. Angelopoulos, Y., Aretakis, S., Gajic, D.: Late-time asymptotics for the wave equation on spherically symmetric stationary backgrounds. Adv. Math. 323, 529–621 (2018)

    Article  MathSciNet  Google Scholar 

  2. Angelopoulos, Y., Aretakis, S., Gajic, D.: Late-time asymptotics for the wave equation on extremal Reissner-Nordström backgrounds. arXiv:1807.03802

  3. Angelopoulos, Y., Aretakis, S., Gajic, D.: Late-time tails and mode coupling of linear waves on Kerr spacetimes. arXiv:2102.11884

  4. Asakura, F.: Existence of a global solution to a semi-linear wave equation with slowly decreasing initial data in three space dimenstions. Commun. Part. Differ. Equ. 13(11), 1459–1487 (1986)

    Article  Google Scholar 

  5. Bahouri, H., Shatah, J.: Decay estimates for the critical semilinear wave equation. Ann. Inst. H. Poincareé Anal. Non Linéaire 15, 783–789 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bieli, R., Szpak, N.: Global pointwise decay estimates for defocusing radial nonlinear wave equations. Commun. Partial Differ. Equ. 36(2), 205–215 (2011)

    Article  MathSciNet  Google Scholar 

  7. Blue, P., Sterbenz, J.: Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space. Commun. Math. Phys. 268(2), 481–504 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  8. Dafermos, M., Rodnianski, I.: Small-amplitude nonlinear waves on a black hole background. J. Math. Pures Appl. (9) 84(9), 1147–1172 (2005)

    Article  MathSciNet  Google Scholar 

  9. Dafermos, M., Rodnianski, I.: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. In: Exner, P. (ed.) XVIth International Congress on Mathematical Physics, pp. 421–433. World Scientific, London (2009)

  10. Donninger, R., Schlag, W., Soffer, A.: On pointwise decay of linear waves on a Schwarzschild black hole background. Commun. Math. Phys. 309, 51–86 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  11. Grillakis, M.: Regularity and asymptotic behavior of the wave equation with a critical nonlinearity. Ann. Math. 132, 485–509 (1990)

    Article  MathSciNet  Google Scholar 

  12. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, No. 1. Cambridge University Press, London, New York (1973)

  13. Georgiev, V., Lindblad, H., Sogge, C.: Weighted Strichartz estimates and global existence for semilinear wave equations. Am. J. Math. 119(6), 1291–1319 (1997)

    Article  MathSciNet  Google Scholar 

  14. Hintz, P.: A sharp version of Price’s law for wave decay on asymptotically flat spacetimes. arXiv:2004.01664

  15. John, F.: Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscr. Math. 28(1–3), 235–268 (1979)

    Article  MathSciNet  Google Scholar 

  16. Jörgens, K.: Das Anfangswertproblem im Grossen fur eine Klasse nichtlinearer Wellengleichungen. Math. Z. 77, 295–308 (1961)

    Article  MathSciNet  Google Scholar 

  17. Lindblad, H., Metcalfe, J., Sogge, C., Tohaneanu, M., Wang, C.: The Strauss conjecture on Kerr black hole backgrounds. Math. Ann. 359(3–4), 637–661 (2014)

    Article  MathSciNet  Google Scholar 

  18. Lindblad, H., Tohaneanu, M.: Global existence for quasilinear wave equations close to Schwarzschild. Commun. Partial Differ. Equ. 43(6), 893–944 (2018)

    Article  MathSciNet  Google Scholar 

  19. Looi, S.Z.: Pointwise decay for the wave equation on nonstationary spacetimes. arXiv:2105.02865

  20. Looi, S.Z.: Pointwise decay for power-type nonlinear wave equations on nonstationary spacetimes. preprint

  21. Luk, J., Oh, S.J.: Quantitative decay rates for dispersive solutions to the Einstein-scalar field system in spherical symmetry. Anal. PDE 8(7), 1603–1674 (2015)

    Article  MathSciNet  Google Scholar 

  22. Marzuola, J., Metcalfe, J., Tataru, D., Tohaneanu, M.: Strichartz estimates on Schwarzschild black hole backgrounds. Commun. Math. Phys. 293(1), 37–83 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. Metcalfe, J., Tataru, D., Tohaneanu, M.: Price’s law on nonstationary space-times. Adv. Math. 230(3), 995–1028 (2012)

  24. Morgan, K.: The effect of metric behavior at spatial infinity on pointwise wave decay in the asymptotically flat stationary setting. arXiv:2006.11324

  25. Morgan, K., Wunsch, J.: Generalized Price’s law on fractional-order asymptotically flat stationary spacetimes. arXiv:2105.02305

  26. Moschidis, G.: The \(r^{p}\)-weighted energy method of Dafermos and Rodnianski in general asymptotically flat spacetimes and applications. Ann. PDE 2(6), 1–194 (2016)

  27. Oliver, J., Sterbenz, J.: A vector field method for radiating black hole spacetimes. Anal. PDE 13(1), 29–92 (2020)

    Article  MathSciNet  Google Scholar 

  28. Price, R.: Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations. Phys. Rev. D (3) 5, 2419–2438 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  29. Pecher, H.: Decay of solutions of nonlinear wave equations in three space dimensions. J. Funct. Anal. 46(2), 221–229 (1982)

    Article  MathSciNet  Google Scholar 

  30. Pecher, H.: Scattering for semilinear wave equations with small data in three space dimensions. Math. Z. 198(2), 277–289 (1988)

    Article  MathSciNet  Google Scholar 

  31. Shatah, J., Struwe, M.: Well Posedness in the energy space space for semilinear wave equations with critical growth. Internat. Math. Res. Notices 7, 303–309 (1994)

    Article  MathSciNet  Google Scholar 

  32. Stogin, J.: Global Stability of the Nontrivial Solutions to the Wave Map Problem from Kerr \(|a|\ll M\) to the Hyperbolic Plane under Axisymmetric Perturbations Preserving Angular Momentum. arXiv:1610.03910

  33. Strauss, W.: Decay and asymptotics for \(\Box u= F(u)\). J. Funct. Anal. 2, 409–457 (1968)

    Article  MathSciNet  Google Scholar 

  34. Strauss, W., Tsutaya, K.: Existence and blow up of small amplitude nonlinear waves with a negative potential. Discr. Cont. Dyn. Syst. 3(2), 175–188 (1997)

    Article  MathSciNet  Google Scholar 

  35. Szpak, N.: Linear and nonlinear tails. I. General results and perturbation theory. J. Hyperbolic Differ. Equ. 5(4), 741–765 (2008)

    Article  MathSciNet  Google Scholar 

  36. Szpak, N.: Weighted-\(L^\infty \) and pointwise space-time decay estimates for wave equations with potentials and initial data of low regularity. arXiv:0708.1185

  37. Tataru, D.: Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation. Trans. Am. Math. Soc. 353(2), 795–807 (2001)

    Article  MathSciNet  Google Scholar 

  38. Tataru, D.: Local decay of waves on asymptotically flat stationary space-times. Am. J. Math. 135(2), 361–401 (2013)

    Article  MathSciNet  Google Scholar 

  39. Tataru, D., Tohaneanu, M.: Local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. IMRN 2, 248–292 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Yang, S.: Pointwise decay for semilinear wave equations in \(R^{1+3}\). arXiv:1908.00607

Download references

Acknowledgements

The author would like to thank Sung-Jin Oh, Shi-Zhuo Looi and Hans Lindblad for many useful conversations regarding the paper, and the Korea Institute for Advanced Study for their hospitality during the spring of 2019. The author was partly supported by the Simons collaboration Grant 586051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Tohaneanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tohaneanu, M. Pointwise decay for semilinear wave equations on Kerr spacetimes. Lett Math Phys 112, 6 (2022). https://doi.org/10.1007/s11005-021-01495-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01495-x

Keywords

Mathematics Subject Classification

Navigation