Skip to main content
Log in

Deformations of the Zolotarev polynomials and Painlevé VI equations

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The aim of this paper is to introduce new type of deformations of domains in the extended complex plane with a marked point and associated Green functions, the so-called iso-harmonic deformations in the first nontrivial case of doubly connected domains and to study their isomonodromic properties. We start with the Zolotarev polynomials, which are a particular case of generalized Chebyshev polynomials, namely minimal polynomials on two intervals. We introduce a deformation of elliptic curves which support Zolotarev polynomials and relate it to the Painlevé VI equations. Then, we transport these considerations into the realm of potential theory of annular domains. We deform these domains and the poles of the associated Green functions in a specific new way, by keeping invariant the corresponding harmonic measure of the boundary circles. We deduce that the critical points of the Green functions under such deformations solve a Painlevé VI equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adabrah, A.K., Dragović, V., Radnović, M.: Periodic billiards within conics in the Minkowski plane and Akhiezer polynomials. Regul. Chaot. Dyn. 24(5), 464–501 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  2. Akhiezer, N. I.: Über einige Funktionen, die in gegebenen Intervallen am wenigsten von Null abveichen, Izv. Kazanskogo fiz-matem. ob-va (1928)

  3. Akhiezer, N. I.: Über einige Funktionen, welche in zwei gegebenen Interwallen am wenigsten von Null abweichen. I Teil, Izvestiya Akad. Nauk SSSA, VII ser., Otd. mat. est. nauk, No. 9, pp. 1163–1202 (1932)

  4. Akhiezer, N.I.: Über einige Funktionen, welche in zwei gegebenen Interwallen am wenigsten von Null abweichen. II Teil, Izvestiya Akad. Nauk SSSA, VII ser., Otd. mat. est. nauk, No. 3, pp. 309–344 (1933)

  5. Akhiezer, N. I.: Über einige Funktionen, welche in zwei gegebenen Interwallen am wenigsten von Null abweichen. III Teil, Izvestiya Akad. Nauk SSSA, VII ser., Otd. mat. est. nauk, No. 4, pp. 499–536 (1933)

  6. Ahiezer, N.I.: Lekcii po Teorii Approksimacii, p. 323. OGIZ, Moscow-Leningrad (1947). in Russian

    Google Scholar 

  7. Akhiezer, N.I.: Elements of the Theory of Elliptic Functions. Translations of Mathematical Monographs, vol. 79, p. viii+237. American Mathematical Society, Providence, RI (1990)

    Book  Google Scholar 

  8. Bogatyrev, A.: On the efficient computation of Chebyshev polynomials for several intervals. Sb. Math. 190(11–12), 1571–1605 (1999)

    Article  MathSciNet  Google Scholar 

  9. Bogatyrev, A.: Combinatorial analysis of period mappings: topology of two-dimensional fibers. Sb. Math. 210(11), 1531–1562 (2019)

    Article  MathSciNet  Google Scholar 

  10. Bogatyrev, A.: Extremal Polynomials and Riemann Surfaces. Springer Monographs in Mathematics, p. xxvi+150. Springer, Heidelberg (2012)

    Book  Google Scholar 

  11. Bogatyrev, A.: Chebyshev representation of rational functions. Sb. Math. 201(11–12), 1579–1598 (2010)

    Article  MathSciNet  Google Scholar 

  12. Chen, Z., Kuo, T.-J., Lin, C.-S., Wang, C.-L.: Green function, Painlevé VI equation, and Eisenstein series of weight one. J. Differ. Geom. 108(2), 185–241 (2018)

    Article  Google Scholar 

  13. Dragović, V., Radnović, M.: Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics. Adv. Math. 231, 1173–1201 (2012)

    Article  MathSciNet  Google Scholar 

  14. Dragović, V., Radnović, M.: Minkowski plane, confocal conics, and billiards. Publ. Inst. Math. (Beograd) (N.S.) 94(108), 17–30 (2013)

    Article  MathSciNet  Google Scholar 

  15. Dragović, V., Radnović, M.: Periodic ellipsoidal billiard trajectories and extremal polynomials. Commun. Math. Phys. 372(1), 183–211 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. Dragović, V., Radnović, M.: Caustics of Poncelet polygons and classical extremal polynomials. Regul. Chaot. Dyn. 24(1), 1–35 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Dragović, V., Shramchenko, V.: Algebro-geometric approach to an Okamoto transformation, the Painlevé VI and Schlesinger equations. Ann. Henri Poincaré 20(4), 1121–1148 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dragović, V., Shramchenko, V.: Dynamics of Chebyshev polynomials on \(d>2\) real intervals, iso-harmonic deformations, and constrained Schlesinger systems (in preparation)

  19. Dubrovin, B.: Theta-functions and nonlinear equations. Uspekhi Matem. Nauk 36, 2 (1981). English translation in: Russian Math. Surv. 36:2, 11–92 (1981)

    MathSciNet  Google Scholar 

  20. Dubrovin, B.: Riemann Surfaces and Non-Linear Equations. I, p. 96. Moscow State University Publishing House, Moscow (1986)

    Google Scholar 

  21. Dubrovin, B.: Geometry of 2D topological field theories. In: Francaviglia, M., Greco, S. (eds.) Integrable Systems and Quantum Groups. Montecatini Terme 1993, Lecture Notes in Mathematics, vol. 1620, pp. 120–348. Springer, Berlin (1996)

    Google Scholar 

  22. Dubrovin, B.: Painlevé transcendents and topological field theory. In: Conte, R. (ed.) The Painlevé Property: One Century Later, pp. 287–412. Springer Verlag, Berlin (1999)

    Chapter  Google Scholar 

  23. Dubrovin, B., Mazzocco, M.: Monodromy of certain Painlevé-VI transcendents and reflection groups. Invent. Math. 141, 55–147 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  24. Garnett, J.B., Marshall, D.E.: Harmonic Measure, New Mathematical Monographs 2, p. 571. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  25. Guzzetti, D.: The elliptic representation of the general Painlevé VI equation. Commun. Pure App. Math. 55(10), 1280–1363 (2002)

    Article  MathSciNet  Google Scholar 

  26. Hazama, F.: Twists and generalized Zolotarev polynomials. Pac. J. Math. 203(2), 379–393 (2002)

    Article  MathSciNet  Google Scholar 

  27. Hitchin, N.: Twistor spaces, Einstein metrics and isomonodromic deformations. J. Differ. Geom. 42(1), 30–112 (1995)

    Article  MathSciNet  Google Scholar 

  28. Hitchin, N.: Poncelet: Polygons and the Painlevé Equations. Geometry and Analysis (Bombay, 1992), pp. 151–185. Tata Institute of Fundamental Research, Bombay (1995)

    MATH  Google Scholar 

  29. Iwasaki, K., Kimura, H., Shimomura, S., Yoshido, M.: From Gauss to Painlevé. A Modern Theory of Special Functions. Aspects of Mathematics, vol. E16. Friedrich, Vieweg & Sohn, Braunschweig (1991)

    Book  Google Scholar 

  30. Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Physica D 2, 407–448 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  31. Khesin, B., Tabachnikov, S.: Pseudo-Riemannian geodesics and billiards. Adv. Math. 221, 1364–1396 (2009)

    Article  MathSciNet  Google Scholar 

  32. Okamoto, K.: Studies on the Painlevé equations. I. Sixth Painlevé equation P\(_{VI}\). Ann. Mat. Pura Appl. (4) 146, 337–381 (1987)

    Article  MathSciNet  Google Scholar 

  33. Peherstorfer, F.: Orthogonal and Chebyshev polynomials on two intervals. Acta Math. Hung. 55(3–4), 245–278 (1990)

    Article  MathSciNet  Google Scholar 

  34. Peherstorfer, F., Schiefermayr, K.: Description of extremal polynomials on several intervals and their computation. I, II. Acta Math. Hung. 83(1–2), 27–58, 59–83 (1999)

  35. Picard, E.: Mémoire sur la théorie des fonctions algébriques de deux variables. J. Liouville 5, 135–319 (1889)

    MATH  Google Scholar 

  36. Shramchenko, V.: Deformations of Hurwitz Frobenius structures. Int. Math. Res. Not. 2005(6), 339–387 (2005)

    Article  MathSciNet  Google Scholar 

  37. Shramchenko, V.: Real doubles of Hurwitz Frobenius manifolds. Commun. Math. Phys. 256, 635–680 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  38. Simon, B.: Szegö’s Theorem and Its Descendants: Spectral Theory for \(L^2\) Perturbations of Orthogonal Polynomials. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  39. Sodin, M.L., Yuditskii, P.M.: Functions that deviate least from zero on closed subsets of the real axis. Algebra i Analiz 4(2), 1–61 (1992). (Russian, with Russian summary); English transl., St. Petersburg Math. J. 4, no. 2, 201–249 (1993)

    MathSciNet  Google Scholar 

  40. Sodin, M.L., Yuditskii, P.M.: Algebraic solution of a problem of E. I. Zolotarev and N. I. Akhiezer on polynomials with smallest deviation from zero. J. Math. Sci. 76(4), 2486–2492 (1995)

    Article  MathSciNet  Google Scholar 

  41. Teschl, G.: Jacobi Operators and Completely Integrable Nonlinear Lattices, Mathematical Surveys and Monographs, vol. 72. AMS, Boston, MA (2000)

    MATH  Google Scholar 

  42. Walsh, J.L.: The Location of Critical Points of Analytic and Harmonic Functions, vol. 34. AMS Colloquium Publications, Boston, MA (1950)

    MATH  Google Scholar 

  43. Weber, H.: Die partiellen Differentialgleichungen der mathematicshen Physik I, p. 354 (1900)

  44. Widom, H.: Extremal polynomials associated with a system of curves in the complex plane. Adv. Math. 3, 127–232 (1969)

    Article  MathSciNet  Google Scholar 

  45. An Application of Elliptic Functions in the Question of Functions of Least and Largest Deviation from Zero (1877), Complete Works of E. I. Zolotarev, vol. 2, pp. 1–59. Publishing House of the USSR Academy of Sciences, Leningrad (1932). Russian

  46. Zolotarev, E.I.: A Problem Concerning Least Quantities, 1868, Complete Works of E. I. Zolotarev, vol. 2, pp. 130–166. Publishing House of the USSR Academy of Sciences, Leningrad (1932). Russian

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Andrey Bogatyrev for useful historical comments and the referees for the suggestions which improved the presentation. V.D. acknowledges with gratitude support from the University of Texas at Dallas, MISANU, the Serbian Ministry of Education, Science, and Technological Development, and the Science Fund of Serbia. V.S. gratefully acknowledges support from the Natural Sciences and Engineering Research Council of Canada through a Discovery grant as well as from the University of Sherbrooke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Dragović.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to the memory of Boris Anatol’evich Dubrovin (1950–2019).

“... his eyes, and they were the same color as the sea and were cheerful and undefeated” (Hemingway).

Boris Dubrovin Memorial Issue Guest Editors: G. Dito, P. Lorenzoni, D. Masoero, P. Rossi, Y. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragović, V., Shramchenko, V. Deformations of the Zolotarev polynomials and Painlevé VI equations. Lett Math Phys 111, 75 (2021). https://doi.org/10.1007/s11005-021-01415-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01415-z

Keywords

Mathematics Subject Classification

Navigation