Skip to main content
Log in

Interplay between symmetries of quantum 6j-symbols and the eigenvalue hypothesis

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The eigenvalue hypothesis claims that any quantum Racah matrix for finite-dimensional representations of \(U_q(sl_N)\) is uniquely determined by eigenvalues of the corresponding quantum \(\mathcal {R}\)-matrices. If this hypothesis turns out to be true, then it will significantly simplify the computation of Racah matrices. Also, due to this hypothesis various interesting properties of colored HOMFLY-PT polynomials will be proved. In addition, it allows one to discover new symmetries of the quantum 6j-symbols, about which almost nothing is known for \(N>2\), with the exception of the tetrahedral symmetries, complex conjugation and transformation \(q \longleftrightarrow q^{-1}\). In this paper, we prove the eigenvalue hypothesis in \(U_q(sl_2)\) case and show that it is equivalent to 6j-symbol symmetries (the Regge symmetry and two argument permutations). Then, we apply the eigenvalue hypothesis to inclusive Racah matrices with 3 symmetric incoming representations of \(U_q(sl_N)\) and an arbitrary outcoming one. It gives us 8 new additional symmetries that are not tetrahedral ones. Finally, we apply the eigenvalue hypothesis to exclusive Racah matrices with symmetric representations and obtain 4 tetrahedral symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. All parameters, corresponding to the second matrix we will label by \(\ \tilde{ }\).

  2. \(R_i=[r_i], \ \widetilde{R}_i=[\widetilde{r}_i]\)

References

  1. Freyd, P., Yetter, D., Hoste, J., Lickorish, W.B.R., Millett, K., Ocneanu, A.: A new polynomial invariant of knots and links. Bull. Am. Math. Soc. 12, 239–246 (1985). https://doi.org/10.1090/S0273-0979-1985-15361-3

    Article  MathSciNet  MATH  Google Scholar 

  2. Przytycki, J.H., Traczyk, P.: Invariants of links of Conway type. J. Knot Theor. 4, 115–139 (1987). https://doi.org/10.1142/S0218216513500788. arXiv:1610.06679

    Article  MathSciNet  MATH  Google Scholar 

  3. Satoshi Nawata, Ramadevi, P., Zodinmawia: Colored HOMFLY polynomials from Chern–Simons theory. J. Knot Theor. 22, 1350078 (2013). https://doi.org/10.1142/S0218216513500788. arXiv:1302.5144

    Article  MathSciNet  MATH  Google Scholar 

  4. Yu, N., Turaev, V.G.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127, 1–26 (1990). https://doi.org/10.1007/BF02096491

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Kirillov, A.N., Reshetikhin, N.Y.: Representations of the algebra \(U_q(sl(2))\), \(q\)-orthogonal polynomials and invariants of links. In: New Developments in the Theory of Knots, pp. 202–256. World Scientific, 1990. https://doi.org/10.1142/9789812798329_0012

  6. Rosengren, H.: An elementary approach to 6j-symbols (classical, quantum, rational, trigonometric, and elliptic). Ramanujan J. 13, 133–168 (2007). arXiv:math/0312310

    Article  MathSciNet  Google Scholar 

  7. Freidel, L., Louapre, D.: Asymptotics of 6j and 10j symbols. Class. Quant. Grav. 20, 1267–1294 (2003). https://doi.org/10.1088/0264-9381/20/7/303. arXiv:hep-th/0209134

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Teschner, J., Vartanov, G.: 6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories. Lett. Math. Phys. 104, 527–551 (2014). https://doi.org/10.1007/s11005-014-0684-3. arXiv:1202.4698

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Liu, J., Perlmutter, E., Rosenhaus, V., Simmons-Duffin, D.: \(d\)-Dimensional SYK, adS loops, and \(6j\) symbols. JHEP 03, 052 (2019). https://doi.org/10.1007/JHEP03(2019)052. arXiv:1808.00612

    Article  MathSciNet  MATH  Google Scholar 

  10. Saswati, D., Mironov, A., Morozov, A., Morozov, A., Ramadevi, P., Vivek Kumar, S., Sleptsov, A.: Multi-Colored Links From 3-strand Braids Carrying Arbitrary Symmetric Representations. Ann. Henri Poincare, 2019. arXiv:1805.03916https://doi.org/10.1007/s00023-019-00841-z

  11. Alekseev, V., Morozov, A., Sleptsov, A.: Multiplicity-free \(U_q(sl_N)\) 6-j symbols: relations, asymptotics, symmetries. Nucl. Phys. B 960, 115164 (2020)

    Article  Google Scholar 

  12. Mironov, A., Morozov, A., Morozov, A.: Character expansion for HOMFLY polynomials. II. Fundamental representation. Up to five strands in braid. JHEP 03, 034 (2012). https://doi.org/10.1007/JHEP03(2012)034. arXiv:1112.2654

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Itoyama, H., Mironov, A., Morozov, A., Morozov, A.: Eigenvalue hypothesis for Racah matrices and HOMFLY polynomials for 3-strand knots in any symmetric and antisymmetric representations. Int. J. Mod. Phys. A28, 1340009 (2013). https://doi.org/10.1142/S0217751X13400095. arXiv:1209.6304

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Mironov, A., Morozov, A.: Universal Racah matrices and adjoint knot polynomials: arborescent knots. Phys. Lett. B 755, 47–57 (2016). https://doi.org/10.1016/j.physletb.2016.01.063. arXiv:1511.09077

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Anokhina, A., Morozov, A.: Cabling procedure for the colored HOMFLY polynomials. Teor. Mat. Fiz. 178, 3–68 (2014). https://doi.org/10.1007/s11232-014-0129-2. arXiv:1307.2216

    Article  MathSciNet  MATH  Google Scholar 

  16. Saswati Dhara, Mironov, A., Morozov, A., Morozov, A., Ramadevi, P., Vivek Kumar Singh, Sleptsov A: Eigenvalue hypothesis for multistrand braids. Phys. Rev D97(12), 126015 (2018). https://doi.org/10.1103/PhysRevD.97.126015. arXiv:1711.10952

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Bishler, L., Morozov, A., Sleptsov, A., Shakirov, S.: On the block structure of the quantum \(\cal{R}\)-matrix in the three-strand braids. Int. J. Mod. Phys A33(17), 1850105 (2018). https://doi.org/10.1142/S0217751X18501051. arXiv:1712.07034

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Mironov, A., Morozov, A.: Eigenvalue conjecture and colored Alexander polynomials. Eur. Phys. J. C 78(4), 284 (2018). https://doi.org/10.1140/epjc/s10052-018-5765-5. arXiv:1610.03043

    Article  Google Scholar 

  19. Mishnyakov, V., Sleptsov, A.: Perturbative analysis of the colored Alexander polynomial and KP soliton \(\tau \)-functions. Nucl. Phys. B 965, 115334 (2021). https://doi.org/10.1016/j.nuclphysb.2021.115334

    Article  MathSciNet  Google Scholar 

  20. Mishnyakov, V., Sleptsov, A., Tselousov, N.: A new symmetry of the colored Alexander polynomial. In: Annales Henri Poincaré, pp. 1–31. Springer, (2021)

  21. Mishnyakov, V., Sleptsov, A., Tselousov, N.: A novel symmetry of colored HOMFLY polynomials coming from \(\mathfrak{sl}(N|M)\) superalgebras. arXiv:2005.01188, (2020)

  22. Morozov, A., Sleptsov, A.: New symmetries for the \(U_q(sl_N)\)\(6\)-\(j\) symbols from the Eigenvalue conjecture. JETP Lett. 108(10), 697–704 (2018). https://doi.org/10.1134/S0021364018220058. arXiv:1905.01876

    Article  ADS  Google Scholar 

  23. Klimyk, A., Schmudgen, K.: Quantum Groups and Their Representations. Springer, Berlin (1997)

    Book  Google Scholar 

  24. Jie, G., Jockers, H.: A note on colored HOMFLY polynomials for hyperbolic knots from WZW models. Commun. Math. Phys. 338(1), 393–456 (2015). https://doi.org/10.1007/s00220-015-2322-z. arXiv:1407.5643

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Mironov, A., Morozov, A., Andrey, M.: Character expansion for HOMFLY polynomials. I. Integrability and difference equations. In Anton, R., Ludmil, K., Johanna, K., Radoslav, R., Emanuel, S (eds.), Strings, gauge fields, and the geometry behind: The legacy of Maximilian Kreuzer, pp. 101–118. 2011. arXiv:1112.5754, https://doi.org/10.1142/9789814412551_0003

  26. Biedenharn, L., Schwinger, J., Van Dam, H.: Quantum theory of angular momentum (1965)

  27. Fulton, W., Harris, J.: Representation Theory: A First Course. Springer, Berlin (1991)

    MATH  Google Scholar 

  28. Nawata, S., Ramadevi, P.Z.: Multiplicity-free quantum 6\(j\)-symbols for \(U_{q}(\mathfrak{sl}{_N})\). Lett. Math. Phys 103, 1389–1398 (2013). https://doi.org/10.1007/s11005-013-0651-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Our work was partly supported by the grant of the Foundation for the Advancement of Theoretical Physics “BASIS” (A.M., A.S. and A.V.), 17-01-00585 (A.M.), 18-31-20046 (A.S.), 19-51-50008-Yaf-a (A.M.), 18-51-05015-Arm-a (A.M, A.S.), 18-51-45010-Ind-a (A.M, A.S.), 19-51-53014-GFEN-a (A.M, A.S.), 20-01-00644 (A.M., A.S. and A.V.), by President of Russian Federation grant MK-2038.2019.1 (A.M.). The work was also partly funded by RFBR and NSFB according to the research project 19-51-18006 (A.M.). On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Sleptsov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, V., Morozov, A. & Sleptsov, A. Interplay between symmetries of quantum 6j-symbols and the eigenvalue hypothesis. Lett Math Phys 111, 50 (2021). https://doi.org/10.1007/s11005-021-01386-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01386-1

Keywords

Mathematics Subject Classification

Navigation