Supersymmetric W-algebras


We explain a general theory of W-algebras in the context of supersymmetric vertex algebras. We describe the structure of W-algebras associated with odd nilpotent elements of Lie superalgebras in terms of their free generating sets. As an application, we produce explicit free generators of the W-algebra associated with the odd principal nilpotent element of the Lie superalgebra \(\mathfrak {gl}(n+1|n)\).

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. 1.

    Ademollo, M., Brink, L., D’Adda, A., D’Auria, R., Napolitano, E., Sciuto, S., Del Giudice, E., Di Vecchia, P., Ferrara, S., Gliozzi, F., Musto, R., Pettorino, R.: Supersymmetric strings and colour confinement. Phys. Lett. 62B, 105–110 (1976)

    ADS  Article  Google Scholar 

  2. 2.

    Arakawa, T.: Introduction to \(W\)-algebras and their representation theory. In: Perspectives in Lie Theory. pp. 179–250, Springer INdAM Ser., 19, Springer, Cham, (2017)

  3. 3.

    Arakawa, T., Molev, A.: Explicit generators in rectangular affine \({\cal{W}}\) -algebras of type \(A\). Lett. Math. Phys. 107, 47–59 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Bakalov, B., Kac, V.G.: Field algebras. Int. Math. Res. Not. 3, 123–159 (2003)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bouwknegt, P.: Extended conformal algebras from Kac–Moody algebras. In: Infinite-dimensional Lie Algebras and Lie Groups, Kac, V. (eds.) Proceedings of CIRM-Luminy Conference, 1988 (World Scientific, Singapore, 1989); Adv. Ser. Math. Phys. 7 (1988), 527

  6. 6.

    Bouwknegt, P., Schoutens, K.: \({\cal{W}}\) -symmetry in conformal field theory. Phys. Rep. 223, 183–276 (1993)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    de Boer, J., Harmsze, F., Tjin, T.: Non-linear finite \(W\)-symmetries and applications in elementary systems. Phys. Rep. 272, 139–214 (1996)

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    de Boer, J., Tjin, T.: The relation between quantum \(W\) algebras and Lie algebras. Commun. Math. Phys. 160, 317–332 (1994)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    De Sole, A., Kac, V.: Finite vs affine \(W\) -algebras. Jpn. J. Math. 1, 137–261 (2006)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Evans, J., Hollowood, T.: Supersymmetric Toda field theories. Nucl. Phys. B 352, 723–768 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Fateev, V.A., Lukyanov, S.L.: The models of two-dimensional conformal quantum field theory with \(Z_n\) symmetry. Int. J. Mod. Phys. A 3, 507–520 (1988)

    ADS  Article  Google Scholar 

  12. 12.

    Fehér, L., O’Raifeartaigh, L., Ruelle, P., Tsutsui, I., Wipf, A.: On hamiltonian reductions of the Wess-Zumino-Novikov-Witten theories. Phys. Rep. 222, 1–64 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    Feigin, B., Frenkel, E.: Quantization of the Drinfeld–Sokolov reduction. Phys. Lett. B 246, 75–81 (1990)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Frappat, L., Ragoucy, E., Sorba, P.: \(W\)-algebras and superalgebras from constrained WZW models: a group theoretical classification. Comun. Math. Phys. 157, 499–548 (1993)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Frenkel, E., Ben-Zvi, D.: Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, vol. 88, 2nd edn. AMS, Providence (2004)

    Google Scholar 

  16. 16.

    Heluani, R., Kac, V.G.: Supersymmetric vertex algebras. Commun. Math. Phys. 271, 103–178 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Ito, K.: Quantum hamiltonian reduction and \(N=2\) coset models. Phys. Lett. B 259, 73–78 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Ito, K.: \(N = 2\) superconformal \(CP_n\) model. Nucl. Phys. B 370, 123–142 (1992)

    ADS  Article  Google Scholar 

  19. 19.

    Kac, V.: Vertex Algebras for Beginners, University Lecture Series, vol. 10, 2nd edn. AMS, Providence (1998)

    Google Scholar 

  20. 20.

    Kac, V.: Introduction to vertex algebras, Poisson vertex algebras, and integrable Hamiltonian PDE. In: Perspectives in Lie Theory. (pp. 3–72). Springer, Cham, (2017)

  21. 21.

    Kac, V., Roan, S.-S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241, 307–342 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    Kac, V., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185, 400–458 (2004)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Madsen, J.O., Ragoucy, E.: Quantum hamiltonian reduction in superspace formalism. Nucl. Phys. B 429, 277–290 (1994)

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    Polyakov, A.M.: Gauge transformations and diffeomorphisms. Int. J. Mod. Phys. A 5, 833–842 (1990)

    ADS  MathSciNet  Article  Google Scholar 

  25. 25.

    Suh, U.R.: Structures of (Supersymmetric) Classical W-Algebras. arXiv:2004.07958

  26. 26.

    Zamolodchikov, A.B.: Infinite extra symmetries in two-dimensional conformal quantum field theory. Teoret. Mat. Fiz. 65, 347–359 (1985)

    MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Uhi Rinn Suh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Molev, A., Ragoucy, E. & Suh, U.R. Supersymmetric W-algebras. Lett Math Phys 111, 6 (2021).

Download citation


  • Supersymmetric Vertex algebras
  • W superalgebras
  • Free generating sets

Mathematics Subject Classification

  • 17B35
  • 17B68
  • 17B69
  • 17B70