On Segal–Sugawara vectors and Casimir elements for classical Lie algebras


We consider the centers of the affine vertex algebras at the critical level associated with simple Lie algebras. We derive new formulas for generators of the centers in the classical types. We also give a new formula for the Capelli-type determinant for the symplectic Lie algebras and calculate the Harish-Chandra images of the Casimir elements arising from the characteristic polynomial of the matrix of generators of each classical Lie algebra.

This is a preview of subscription content, access via your institution.


  1. 1.

    Chervov, A.V., Molev, A.I.: On higher order Sugawara operators. Int. Math. Res. Not. 2009, 1612–1635 (2009)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Chervov, A., Talalaev, D.: Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence. arXiv:hep-th/0604128

  3. 3.

    Feigin, B., Frenkel, E.: Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras. Int. J. Mod. Phys. A 7(Suppl. 1A), 197–215 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Frenkel, E.: Langlands Correspondence for Loop Groups, Cambridge Studies in Advanced Mathematics, 103. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  5. 5.

    Howe, R., Umeda, T.: The Capelli identity, the double commutant theorem, and multiplicity-free actions. Math. Ann. 290, 569–619 (1991)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Hu, J., Xiao, Z.: On tensor spaces for Birman–Murakami–Wenzl algebras. J. Algebra 324, 2893–2922 (2010)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Iorgov, N., Molev, A.I., Ragoucy, E.: Casimir elements from the Brauer–Schur–Weyl duality. J. Algebra 387, 144–159 (2013)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Kac, V.: Vertex Algebras for Beginners, University Lecture Series, 10. American Mathematical Society, Providence, RI (1997)

    Google Scholar 

  9. 9.

    Macdonald, I. G.: Schur functions: theme and variations. In: Actes 28-e Séminaire Lotharingien, pp. 5–39, Publ. I.R.M.A. Strasbourg, 498/S–27 (1992)

  10. 10.

    Molev, A.I.: Sklyanin determinant, Laplace operators and characteristic identities for classical Lie algebras. J. Math. Phys. 36, 923–943 (1995)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Molev, A.I.: Feigin–Frenkel center in types \(B\), \(C\) and \(D\). Invent. Math. 191, 1–34 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    Molev, A.: Sugawara Operators for Classical Lie Algebras. Mathematical Surveys and Monographs 229. AMS, Providence, RI (2018)

    Google Scholar 

  13. 13.

    Molev, A.I., Mukhin, E.E.: Yangian characters and classical \({\cal{W} }\)-algebras. In: Kohnen, W., Weissauer, R. (eds.) Conformal Field Theory, Automorphic Forms and Related Topics, pp. 287–334. Springer, Berlin (2014)

    Google Scholar 

  14. 14.

    Molev, A.I., Ragoucy, E., Rozhkovskaya, N.: Segal-Sugawara vectors for the Lie algebra of type \(G_2\). J. Algebra 455, 386–401 (2016)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Okounkov, A., Olshanski, G.: Shifted Schur functions. St. Petersb. Math. J. 9, 239–300 (1998)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Wachi, A.: Central elements in the universal enveloping algebras for the split realization of the orthogonal Lie algebras. Lett. Math. Phys. 77, 155–168 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    Yakimova, O.: Symmetrisation and the Feigin–Frenkel centre. arXiv:1910.10204v2

Download references

Author information



Corresponding author

Correspondence to A. I. Molev.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Molev, A.I. On Segal–Sugawara vectors and Casimir elements for classical Lie algebras. Lett Math Phys 111, 8 (2021). https://doi.org/10.1007/s11005-020-01344-3

Download citation


  • Affine Kac-Moody algebra
  • Feigin-Frenkel center
  • Harish-Chandra isomorphism
  • Capelli determinant

Mathematics Subject Classification

  • 17B69
  • 17B35