Abstract
We construct non-geometric string compactifications by using the F-theory dual of the heterotic string compactified on a two-torus with two Wilson line parameters, together with a close connection between modular forms and the equations for certain K3 surfaces of Picard rank 16. We construct explicit Weierstrass models for all inequivalent Jacobian elliptic fibrations supported on this family of K3 surfaces and express their parameters in terms of modular forms generalizing Siegel modular forms. In this way, we find a complete list of all dual non-geometric compactifications obtained by the partial Higgsing of the heterotic string gauge algebra using two Wilson line parameters.
This is a preview of subscription content,
to check access.
References
Aspinwall, P.S.: Some Relationships Between Dualities in String Theory, 1996, 30–38, \(S\)-duality and mirror symmetry (Trieste 1995)
Aspinwall, P.S.: Point-like instantons and the \({\rm Spin}(32), Z_2\) heterotic string. Nuclear Phys. B 496(1–2), 149–176 (1997)
Aspinwall, P.S., Douglas, M.R.: D-brane stability and monodromy. J. High Energy Phys. 5(31), 35 (2002)
Aspinwall, P.S., Gross, M.: The \({\rm SO}(32)\) heterotic string on a \(K3\) surface. Phys. Lett. B 387(4), 735–742 (1996)
Aspinwall, P.S., Morrison, D.R.: Non-simply-connected gauge groups and rational points on elliptic curves, (1998). J. High Energy Phys. 7, Paper 12, 16
Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces, Second, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4, Springer, Berlin (2004)
Bershadsky, M., Pantev, T., Sadov, V.: F-theory with quantized fluxes. Adv. Theor. Math. Phys. 3(3), 727–773 (1999)
Bianchi, M.: A note on toroidal compactifications of the type I superstring and other superstring vacuum configurations with 16 supercharges. Nuclear Phys. B 528(1–2), 73–94 (1998)
Clingher, A., Malmendier, A., Shaska, T.: Six line configurations and string dualities. Commun. Math. Phys. 371(1), 159–196 (2019)
Clingher, A., Hill, T., Malmendier, A.: Jacobian elliptic fibrations on a special family of K3 surfaces of picard rank sixteen, arXiv:1908.09578 [math.AG] (2019)
Clingher, A., Doran, C.F.: Modular invariants for lattice polarized K3 surfaces. Michigan Math. J. 55(2), 355–393 (2007)
Clingher, A., Doran, C.F.: Note on a geometric isogeny of K3 surfaces. Int. Math. Res. Not. IMRN 16, 3657–3687 (2011)
Cvetič, M., Klevers, D., Piragua, H.: F-theory compactifications with multiple U(1)-factors: constructing elliptic fibrations with rational sections. J. High Energy Phys. 6, 067 (2013). front matter+53
Dolgachev, I.V.: Mirror Symmetry for Lattice Polarized K3 Surfaces, pp. 2599–2630. Algebraic geometry, 4 (1996)
Dolgachev, I.: Integral quadratic forms: applications to algebraic geometry (after V. Nikulin), Bourbaki seminar, Vol. 1982/83, pp. 251–278 (1983)
Douglas, M.R.: D-branes, categories and \(\text{N} = 1\) supersymmetry, pp. 2818–2843. Strings, branes, and M-theory (2001)
Gritsenko, V.A., Hulek, K., Sankaran, G.K.: The Kodaira dimension of the moduli of K3 surfaces. Invent. Math. 169(3), 519–567 (2007)
Gu, J., Jockers, H.: Nongeometric F-theory-heterotic duality. Phys. Rev. D 91(8), 086007 (2015)
Hosono, S., Lian, B.H, Yau, S.-T.: K3 surfaces from configurations of six lines in \({\mathbb{P}} ^{2}\) and mirror symmetry. Int Math Res Notices (2019)
Igusa, J.-I.: On Siegel modular forms of genus two. Am. J. Math. 84, 175–200 (1962)
Inose, H: Defining equations of singular K3 surfaces and a notion of isogeny. In: Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), pp. 495–502 (1978)
Katz, S., Morrison, D.R., Schäfer-Nameki, S., Sully, J.: Tate’s algorithm and F-theory. J. High Energy Phys. 8, 09428 (2011)
Kimura, Y.: Nongeometric heterotic strings and dual F-theory with enhanced gauge groups. J. High Energy Phys. 2, 036 (2019). front matter+38
Kimura, Y.: Unbroken \(e_7\times e_7\) nongeometric heterotic strings, stable degenerations and enhanced gauge groups in f-theory duals, High Energy Physics - Theory (2019)
Kodaira, K.: On compact analytic surfaces. II, III, Ann. Math. (2) 77 (1963), 563–626; ibid. 78 (1963), 1–40
Lawrie, C., Schäfer-Nameki, S.: The Tate form on steroids: resolution and higher codimension fibers. J. High Energy Phys. 4, 061 (2013)
Lüst, D., Massai, S., Camell, V.V.: The monodromy of T -folds and T -fects. J. High Energy Phys. 9, 127 (2016)
Malmendier, A., Shaska, T.: The Satake sextic in F-theory. J. Geom. Phys. 120, 290–305 (2017)
Malmendier, A.: The signature of the Seiberg–Witten surface, Surveys in differential geometry. Volume XV. Perspectives in Mathematics and Physics, pp. 255–277 (2011)
Malmendier, A.: Kummer surfaces associated with Seiberg–Witten curves. J. Geom. Phys. 62(1), 107–123 (2012)
Malmendier, A., Morrison, D.R.: K3 surfaces, modular forms, and non-geometric heterotic compactifications. Lett. Math. Phys. 105(8), 1085–1118 (2015)
Matsumoto, K.: Theta functions on the bounded symmetric domain of type I2, 2 and the period map of a 4-parameter family of K3 surfaces. Math. Ann. 295(3), 383–409 (1993)
Mayrhofer, C., Font, A., Garcia-Etxebarria, I., Lüst, D., Massai, S.: Non-geometric heterotic backgrounds and 6D SCFTS. In: Proceedings of Corfu Summer Institute 2016 School and Workshops on Elementary Particle Physics and Gravity—PoS(CORFU2016) (2017)
Mayrhofer, C., Morrison, D.R., Oskar, T., Weigand, T.: Mordell-Weil torsion and the global structure of gauge groups in F-theory. J. High Energy Phys. 10, 016 (2014)
McOrist, J., Morrison, D.R., Sethi, S.: Geometries, non-geometries, and fluxes. Adv. Theor. Math. Phys. 14(5), 1515–1583 (2010)
Morrison, D.R., Vafa, C.: Compactifications of F-theory on Calabi–Yau threefolds. II. Nuclear Phys. B 476(3), 437–469 (1996)
Namikawa, Y., Ueno, K.: On geometrical classification of fibers in pencils of curves of genus two. Proc. Jpn. Acad. 48, 373–376 (1972)
Namikawa, Y., Ueno, K.: The complete classification of fibres in pencils of curves of genus two. Manuscr. Math. 9, 143–186 (1973)
Namikawa, Y., Ueno, K.: On fibres in families of curves of genus two. I. Singular fibres of elliptic type, 297–371 (1973)
Narain, K.S.: New heterotic string theories in uncompactified dimensions \(< 10\). Phys. Lett. B 169(1), 41–46 (1986)
Narain, K.S., Sarmadi, M.H., Witten, E.: A note on toroidal compactification of heterotic string theory. Nuclear Phys. B 279(3–4), 369–379 (1987)
Néron, A.: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Inst. Hautes Études Sci. Publ. Math. 21, 128 (1964)
Nikulin, V.V.: An analogue of the Torelli theorem for Kummer surfaces of Jacobians. Izv. Akad. Nauk SSSR Ser. Mat. 38, 22–41 (1974)
Nikulin, V.V.: Kummer surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 39(2), 278–293, 471 (1975)
Nikulin, V.V.: Finite groups of automorphisms of Kählerian K3 surfaces. Trudy Moskov. Mat. Obshch. 38, 75–137 (1979)
Nikulin, V.V.: Integer symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat. 43(1), 111–177, 238 (1979)
Nikulin, V.V.: Quotient-groups of groups of automorphisms of hyperbolic forms by subgroups generated by 2-reflections. Curr. Probl. Math. 18, 3–114 (1981)
Ovrut, B.A., Pantev, T., Park, J.: Small instanton transitions in heterotic Mtheory. J. High Energy Phys. 5, Paper 45, 37 (2000)
Park, J.: Orientifold and F-theory duals of CHL strings. Phys. Lett. B 418(1–2), 91–97 (1998)
John, H.: Schwarz, An SL(2, Z) multiplet of type IIB superstrings. Phys. Lett. B 360(1–2), 13–18 (1995)
Vafa, C.: Evidence for F-theory. Nuclear Phys. B 469(3), 403–415 (1996)
Vinberg, E.B.: On automorphic forms on symmetric domains of type IV. Uspekhi Mat. Nauk 65(3(393)), 193–194 (2010)
Vinberg, E.B.: On the algebra of Siegel modular forms of genus 2. Trans. Moscow Math. Soc. pp. 1–13 (2013)
Witten, E.: String theory dynamics in various dimensions. Nuclear Phys. B 443(1–2), 85–126 (1995)
Witten, E.: Non-perturbative superpotentials in string theory. Nuclear Phys. B 474(2), 343–360 (1996)
Witten, E.: Small instantons in string theory. Nuclear Phys. B 460(3), 541–559 (1996)
Witten, E.: Toroidal compactification without vector structure. J. High Energy Phys. 2, Paper 6, 43 (1998)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
A.M. acknowledges support from the Simons Foundation through Grant No. 202367.
Rights and permissions
About this article
Cite this article
Clingher, A., Hill, T. & Malmendier, A. The duality between F-theory and the heterotic string in \(D=8\) with two Wilson lines. Lett Math Phys 110, 3081–3104 (2020). https://doi.org/10.1007/s11005-020-01323-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11005-020-01323-8