Skip to main content
Log in

Level one Weyl modules for toroidal Lie algebras

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We identify level one global Weyl modules for toroidal Lie algebras with certain twists of modules constructed by Moody–Eswara Rao–Yokonuma via vertex operators for type ADE and by Iohara–Saito–Wakimoto and Eswara Rao for general type. The twist is given by an action of \(\mathrm {SL}_{2}(\mathbb {Z})\) on the toroidal Lie algebra. As a by-product, we obtain a formula for the character of the level one local Weyl module over the toroidal Lie algebra and that for the graded character of the level one graded local Weyl module over an affine analog of the current Lie algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chari, V., Fourier, G., Khandai, T.: A categorical approach to Weyl modules. Transform. Groups 15(3), 517–549 (2010)

    Article  MathSciNet  Google Scholar 

  2. Chari, V., Ion, B., Kus, D.: Weyl modules for the hyperspecial current algebra. Int. Math. Res. Not. 15, 6470–6515 (2015)

    Article  MathSciNet  Google Scholar 

  3. Chari, V., Le, T.: Representations of double affine Lie algebras. In: Lakshmibai, V., et al. (eds.) A Tribute to C. S. Seshadri: Perspectives in Geometry and Representation Theory, pp. 199–219. Birkhäuser, Basel (2002)

    Google Scholar 

  4. Chari, V., Loktev, S.: Weyl, Demazure and fusion modules for the current algebra of \(\mathfrak{sl}_{r+1}\). Adv. Math. 207(2), 928–960 (2006)

    Article  MathSciNet  Google Scholar 

  5. Chari, V., Pressley, A.: Weyl modules for classical and quantum affine algebras. Represent. Theory 5, 191–223 (2001) (electronic)

  6. Eswara Rao, S.: A new class of modules for toroidal Lie superalgebras. São Paulo J. Math. Sci. 6(1), 97–115 (2012)

    Article  MathSciNet  Google Scholar 

  7. Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Representations of quantum toroidal \({\mathfrak{gl}}_n\). J. Algebra 380, 78–108 (2013)

    Article  MathSciNet  Google Scholar 

  8. Frenkel, I.B., Kac, V.G.: Basic representations of affine Lie algebras and dual resonance models. Invent. Math. 62(1), 23–66 (1980/81)

  9. Feigin, B., Loktev, S.: Multi-dimensional Weyl modules and symmetric functions. Commun. Math. Phys. 251(3), 427–445 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fourier, G., Littelmann, P.: Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions. Adv. Math. 211(2), 566–593 (2007)

    Article  MathSciNet  Google Scholar 

  11. Guay, N., Regelskis, V., Wendlandt, C.: Vertex representations for Yangians of Kac–Moody algebras. J. École Polytech. Math. 6, 665–706 (2019)

    Article  MathSciNet  Google Scholar 

  12. Ion, B.: Nonsymmetric Macdonald polynomials and Demazure characters. Duke Math. J. 116(2), 299–318 (2003)

    Article  MathSciNet  Google Scholar 

  13. Iohara, K., Saito, Y., Wakimoto, M.: Hirota bilinear forms with \(2\)-toroidal symmetry. Phys. Lett. A 254(1–2), 37–46 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov–Reshetikhin crystals II. Alcove model, path model, and \(P=X\). Int. Math. Res. Not. 14, 4259–4319 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Miki, K.: Toroidal braid group action and an automorphism of toroidal algebra \({\rm U}_q({\rm sl}_{n+1, tor}) (n\ge 2)\). Lett. Math. Phys. 47(4), 365–378 (1999)

    Article  MathSciNet  Google Scholar 

  16. Moody, R.V., Eswara Rao, S., Yokonuma, T.: Toroidal Lie algebras and vertex representations. Geom. Dedicata 35(1–3), 283–307 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Naoi, K.: Weyl modules, Demazure modules and finite crystals for non-simply laced type. Adv. Math. 229(2), 875–934 (2012)

    Article  MathSciNet  Google Scholar 

  18. Saito, Y.: Quantum toroidal algebras and their vertex representations. Publ. Res. Inst. Math. Sci. 34(2), 155–177 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  19. Sanderson, Y.B.: On the connection between Macdonald polynomials and Demazure characters. J. Algebr. Combin. 11(3), 269–275 (2000)

    Article  MathSciNet  Google Scholar 

  20. Saito, Y., Takemura, K., Uglov, D.: Toroidal actions on level \(1\) modules of \(U_q(\widehat{\mathfrak{sl}}_n)\). Transform. Groups 3(1), 75–102 (1998)

    Article  MathSciNet  Google Scholar 

  21. Tsymbaliuk, A.: Several realizations of Fock modules for toroidal \({\ddot{U}}_{q, d}(\mathfrak{sl}_n)\). Algebr. Represent. Theory 22(1), 177–209 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to Ryo Sato who pointed out that the result of [6] can be used to improve this work. He also would like to thank Yoshihisa Saito and Kentaro Wada for helpful discussion. This work was supported by JSPS KAKENHI Grant Numbers 17H06127 and 18K13390.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Kodera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodera, R. Level one Weyl modules for toroidal Lie algebras. Lett Math Phys 110, 3053–3080 (2020). https://doi.org/10.1007/s11005-020-01321-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-020-01321-w

Keywords

Mathematics Subject Classification

Navigation