Abstract
We identify level one global Weyl modules for toroidal Lie algebras with certain twists of modules constructed by Moody–Eswara Rao–Yokonuma via vertex operators for type ADE and by Iohara–Saito–Wakimoto and Eswara Rao for general type. The twist is given by an action of \(\mathrm {SL}_{2}(\mathbb {Z})\) on the toroidal Lie algebra. As a by-product, we obtain a formula for the character of the level one local Weyl module over the toroidal Lie algebra and that for the graded character of the level one graded local Weyl module over an affine analog of the current Lie algebra.
Similar content being viewed by others
References
Chari, V., Fourier, G., Khandai, T.: A categorical approach to Weyl modules. Transform. Groups 15(3), 517–549 (2010)
Chari, V., Ion, B., Kus, D.: Weyl modules for the hyperspecial current algebra. Int. Math. Res. Not. 15, 6470–6515 (2015)
Chari, V., Le, T.: Representations of double affine Lie algebras. In: Lakshmibai, V., et al. (eds.) A Tribute to C. S. Seshadri: Perspectives in Geometry and Representation Theory, pp. 199–219. Birkhäuser, Basel (2002)
Chari, V., Loktev, S.: Weyl, Demazure and fusion modules for the current algebra of \(\mathfrak{sl}_{r+1}\). Adv. Math. 207(2), 928–960 (2006)
Chari, V., Pressley, A.: Weyl modules for classical and quantum affine algebras. Represent. Theory 5, 191–223 (2001) (electronic)
Eswara Rao, S.: A new class of modules for toroidal Lie superalgebras. São Paulo J. Math. Sci. 6(1), 97–115 (2012)
Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Representations of quantum toroidal \({\mathfrak{gl}}_n\). J. Algebra 380, 78–108 (2013)
Frenkel, I.B., Kac, V.G.: Basic representations of affine Lie algebras and dual resonance models. Invent. Math. 62(1), 23–66 (1980/81)
Feigin, B., Loktev, S.: Multi-dimensional Weyl modules and symmetric functions. Commun. Math. Phys. 251(3), 427–445 (2004)
Fourier, G., Littelmann, P.: Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions. Adv. Math. 211(2), 566–593 (2007)
Guay, N., Regelskis, V., Wendlandt, C.: Vertex representations for Yangians of Kac–Moody algebras. J. École Polytech. Math. 6, 665–706 (2019)
Ion, B.: Nonsymmetric Macdonald polynomials and Demazure characters. Duke Math. J. 116(2), 299–318 (2003)
Iohara, K., Saito, Y., Wakimoto, M.: Hirota bilinear forms with \(2\)-toroidal symmetry. Phys. Lett. A 254(1–2), 37–46 (1999)
Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov–Reshetikhin crystals II. Alcove model, path model, and \(P=X\). Int. Math. Res. Not. 14, 4259–4319 (2017)
Miki, K.: Toroidal braid group action and an automorphism of toroidal algebra \({\rm U}_q({\rm sl}_{n+1, tor}) (n\ge 2)\). Lett. Math. Phys. 47(4), 365–378 (1999)
Moody, R.V., Eswara Rao, S., Yokonuma, T.: Toroidal Lie algebras and vertex representations. Geom. Dedicata 35(1–3), 283–307 (1990)
Naoi, K.: Weyl modules, Demazure modules and finite crystals for non-simply laced type. Adv. Math. 229(2), 875–934 (2012)
Saito, Y.: Quantum toroidal algebras and their vertex representations. Publ. Res. Inst. Math. Sci. 34(2), 155–177 (1998)
Sanderson, Y.B.: On the connection between Macdonald polynomials and Demazure characters. J. Algebr. Combin. 11(3), 269–275 (2000)
Saito, Y., Takemura, K., Uglov, D.: Toroidal actions on level \(1\) modules of \(U_q(\widehat{\mathfrak{sl}}_n)\). Transform. Groups 3(1), 75–102 (1998)
Tsymbaliuk, A.: Several realizations of Fock modules for toroidal \({\ddot{U}}_{q, d}(\mathfrak{sl}_n)\). Algebr. Represent. Theory 22(1), 177–209 (2019)
Acknowledgements
The author is grateful to Ryo Sato who pointed out that the result of [6] can be used to improve this work. He also would like to thank Yoshihisa Saito and Kentaro Wada for helpful discussion. This work was supported by JSPS KAKENHI Grant Numbers 17H06127 and 18K13390.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kodera, R. Level one Weyl modules for toroidal Lie algebras. Lett Math Phys 110, 3053–3080 (2020). https://doi.org/10.1007/s11005-020-01321-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11005-020-01321-w