Skip to main content
Log in

General derivative Thomae formula for singular half-periods

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The paper develops second Thomae theorem in hyperelliptic case. The main formula, called general Thomae formula, provides expressions for values at zero of the lowest non-vanishing derivatives of theta functions with singular characteristics of arbitrary multiplicity in terms of branch points and period matrix. We call these values derivative theta constants. First and second Thomae formulas follow as particular cases. Some further results are derived. Matrices of second derivative theta constants (Hessian matrices of zero-values of theta functions with characteristics of multiplicity two) have rank three in any genus. Similar result about the structure of order three tensor of third derivative theta constants is obtained, and a conjecture regarding higher multiplicities is made. As a byproduct, a generalization of Bolza formulas are deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Thomae, J.: Beitrag zur Bestimmung \(\theta (0, 0,\ldots, 0)\) durch die Klassenmuduln algebraicher Funktionen. J. Reine Angew. Math 71, 201–222 (1870)

    MathSciNet  MATH  Google Scholar 

  2. Bershadski, M., Radul, A.: Fermionic fields on \({\mathbb{Z}}_N\)-curves. Commun. Math. Phys. 116, 689–700 (1988)

    Article  ADS  Google Scholar 

  3. Nakayashiki, A.: On the Thomae formula for \({\mathbb{Z}}_N\) curves. Publ. Res. Inst. Math. Sci. 33(6), 987–1015 (1997)

    Article  MathSciNet  Google Scholar 

  4. Enolski, V., Grava, T.: Thomae type formulae for singular \({\mathbb{Z}}_N\) curves. Lett. Math. Phys. 76(2–3), 187–214 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ya, K.: Thomae formula for general cyclic covers of \(\mathbb{CP}^{1}\). Lett. Math. Phys. 94(3), 313–333 (2010)

    Article  MathSciNet  Google Scholar 

  6. Kopeliovich, Y., Zemel, S. (2019) Thomae formula for Abelian covers of \(\mathbb{CP}^{1}\). Trans. Am. Math. Soc., arXiv:1612.09104

  7. Matsumoto, K., Terasoma, T.: Degenerations of triple coverings and Thomae’s formula (2010). arXiv:1001.4950

  8. Enolski, V., Kopeliovich, Y., Zemel, S.: Thomae’s derivative formulae for Trigonal curves. Lett. Math. Phys. (submitted). arXiv:1810.06031

  9. Bolza, O.: Ueber die Reduction hyperelliptischer Integrale erster Ordnung und erster Gattung auf elliptische durch eine Transformation vierten Grades. Math. Ann. 28(3), 447–456 (1887)

    Article  Google Scholar 

  10. Baker, H.F.: On the hyperelliptic sigma functions. Am. J. Math. 20(4), 301–384 (1898)

    Article  MathSciNet  Google Scholar 

  11. Baker, H.F.: Multiply Periodic Functions. Cambridge University Press, Cambridge (1907)

    MATH  Google Scholar 

  12. Grant, D.: A generalization of Jacobi’s derivative formula to dimension two. J. Reine Angew. Math. 392, 125–136 (1988)

    MathSciNet  MATH  Google Scholar 

  13. Enolski, V., Hackmann, E., Kagramanova, V., Kunz, J., Lämmerzahl, C.: Inversion of hyperelliptic integrals of arbitrary genus with application to particle motion in general relativity. J. Geom. Phys. 61, 899–921 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. Enolski, V., Hartmann, B., Kagramanova, V., Kunz, J., Lämmerzahl, C., Sirimachan, P.: J. Math. Phys. 53, 012504 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. Buchstaber, V.M., Enolski, V.Z., Leykin, D.V.: Multi-dimensional sigma-functions, p. 267 (2012). arXiv:1208.0990

  16. Enolski, V.Z., Richter, P.H.: Periods of hyperelliptic integrals expressed in terms of \(\theta \)-constants by means of Thomae formulae. Philos. Trans. Lond. Math. Soc. A 366, 1005–1024 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Rauch, H.E., Farkas, H.M.: Theta Functions with Applications to Riemann Surfaces, p. 232. The Williams & Wilkins Company, Baltimore (1974)

    MATH  Google Scholar 

  18. Fay, J.D.: Theta Functions on Riemann Surfaces. Lectures Notes in Mathematics, vol. 352. Springer, Berlin (1973)

    Book  Google Scholar 

  19. Eilers, K.: Rosenhain–Thomae formulae for higher genera hyperelliptic curves. J. Nonlinear Math Phys. 25(1), 86–105 (2018)

    Article  MathSciNet  Google Scholar 

  20. Baker, H.F.: Abel’s Theorem and the Allied Theory of Theta Functions. Cambridge University Press, Cambridge (1897). Reprinted in 1995

    MATH  Google Scholar 

  21. Grushevsky, S., Manni, R.S.: Jacobians with a vanishing theta-null in genus 4. Isr. J. Math. 164(1), 303–315 (2008). arXiv:math/0605160

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The problem of obtaining general Thomae formula was posed by Y. Kopeliovich, who also encouraged the author to work on it. The author is grateful to Y. Kopeliovich and V. Enolski for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bernatska.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernatska, J. General derivative Thomae formula for singular half-periods. Lett Math Phys 110, 2983–3014 (2020). https://doi.org/10.1007/s11005-020-01315-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-020-01315-8

Keywords

Mathematics Subject Classification

Navigation