Skip to main content
Log in

Classical limits of gauge-invariant states and the choice of algebra for strict quantization

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze the quantization of a system consisting of a particle in an external Yang–Mills field within a C*-algebraic framework. We show that in both the classical and quantum theories of such a system, the kinematical algebra of physical quantities can be obtained by restricting attention to symmetry-invariant states on a C*-algebra. We use this to show that symmetry-invariant quantum states correspond to symmetry-invariant classical states in the classical limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binz, E., Honegger, R., Rieckers, A.: Construction and uniqueness of the C*-Weyl algebra over a general pre-symplectic space. J. Math. Phys. 45(7), 2885–2907 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Binz, E., Honegger, R., Rieckers, A.: Field-theoretic Weyl Quantization as a Strict and Continuous Deformation Quantization. Annales de l’Institut Henri Poincaré 5, 327–346 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Buchholz, D.: The resolvent algebra for oscillating lattice systems: Dynamics, ground and equilibrium states. Commun. Math. Phys. 353(2), 691–716 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Buchholz, D.: The resolvent algebra of non-relativistic bose fields: Observables, dynamics and states. Commun. Math. Phys. 362(3), 949–981 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Buchholz, D., Grundling, H.: The resolvent algebra: a new approach to canonical quantum systems. J. Funct. Anal. 254, 2725–2779 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Buchholz, D., Grundling, H.: Quantum systems and resolvent algebras. In: Blanchard, B., Fröhlich, J. (eds.) The Message of Quantum Science: Attempts Towards a Synthesis, pp. 33–45. Springer, Berlin (2015)

    Google Scholar 

  7. Costello, K.: Renormalization and Effective Field Theory. American Mathematical Society, Providence, RI (2011)

    MATH  Google Scholar 

  8. Dixmier, J.: C*-Algebras. North Holland, New York (1977)

    MATH  Google Scholar 

  9. Dütsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory, and deformation quantization. In; Proceedings of the Conference on Mathematical Physics in Mathematics and Physics, Siena (2001) arXiv:hep-th/0101079v1

  10. Feintzeig, B.: On the choice of algebra for quantization. Philos. Sci. 85(1), 102–125 (2018)

  11. Feintzeig, B.: The classical limit of a state on the Weyl algebra. J. Math. Phys. 59, 112102 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Feintzeig, B., Manchak, J., Rosenstock, S., Weatherall, J.: Why be regular? Part I. Stud. History Philos. Mod. Phys. 65, 122–132 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Feintzeig, B., Weatherall, J.: Why be regular? Part II. Stud. History Philos. Mod. Phys. 65, 133–144 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Fell, G., Doran, R.: Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles. Academic Press, Boston (1988)

    MATH  Google Scholar 

  15. Grundling, H.: A group algebra for inductive limit groups. Continuity problems of the canonical commutation relations. Acta Appl. Math. 46, 107–145 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Grundling, H., Neeb, K.-H.: Full regularity for a c*-algebra of the canonical commutation relations. Rev. Math. Phys. 21, 587–613 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Guillemin, V., Sternberg, S.: Geometric quantization and multiplicities of group representations. Invent. Math. 67(3), 515–538 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Honegger, R., Rieckers, A.: Some continuous field quantizations, equivalent to the C*-weyl quantization. Publ. Res. Inst. Math. Sci. 41, 113–138 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Honegger, R., Rieckers, A., Schlafer, L.: Field-theoretic weyl deformation quantization of enlarged poisson algebras. Symmetry Integr. Geom Methods Appl. 4, 047–084 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Landsman, N.P.: C*-algebraic quantization and the origin of topological quantum effects. Lett. Math. Phys. 20, 11–18 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Landsman, N.P.: Quantization and superselection sectors I. Transformation group C*-algebras. Rev. Math. Phys. 2(1), 45–72 (1990)

    MathSciNet  MATH  Google Scholar 

  22. Landsman, N.P.: Quantization and superselection sectors II. Dirac monopole and Aharonov–Bohm effect. Rev. Math. Phys. 2(1), 73–104 (1990)

    MathSciNet  MATH  Google Scholar 

  23. Landsman, N.P.: Strict deformation quantization of a particle in external gravitational and Yang–Mills fields. J. Geom. Phys. 12, 93–132 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Landsman, N.P.: The quantization of constrained systems: from symplectic reduction to Rieffel induction. In: Antoine, J. (ed) Proceedings of the XIV Workshop on Geometric Methods in Physics. Polish Scientific Publishers, Białowieza (1995)

  25. Landsman, N.P.: Rieffel induction as generalized quantum Marsden-Weinstein reduction. J. Geom. Phys. 15, 285–319 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Landsman, N.P.: Mathematical Topics Between Classical and Quantum Mechanics. Springer, New York (1998)

    MATH  Google Scholar 

  27. Landsman, N.P.: Twisted lie group c*-algebras as strict quantizations. Lett. Math. Phys. 46, 181–188 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Landsman, N.P.: Functorial quantization and the Guillemin-Sternberg conjecture. In: Ali, S. (ed.) Proceedings of the XXth Workshop on Geometric Methods in Physics, Springer, Bialowieza (2003)

  29. Landsman, N.P.: Quantization as a functor. In: Voronov, T. (ed) Quantization, Poisson Brackets and Beyond, pp. 9–24. Contemp. Math., 315, AMS, New York (2003)

  30. Landsman, N.P.: Between classical and quantum. In: Butterfield, J., Earman, J. (eds.) Handbook of the Philosophy of Physics, vol. 1, pp. 417–553. Elsevier, New York (2007)

    Google Scholar 

  31. Landsman, N.P.: Foundations of Quantum Theory: From Classical Concepts to Operator Algebras. Springer, Berlin (2017)

    MATH  Google Scholar 

  32. Manuceau, J., Sirugue, M., Testard, D., Verbeure, A.: The smallest C*-algebra for the canonical commutation relations. Commun. Math. Phys. 32, 231–243 (1974)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Marsden, J., Weinstein, M.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5(1), 121–30 (1974)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Pedersen, G., Eilers, S., Olesen, D.: C*-Algebras and Their Automorphism Groups, 2nd edn. Academic Press, Cambridge (2018)

    Google Scholar 

  35. Petz, D.: An Invitation to the Algebra of Canonical Commutation Relations. Leuven University Press, Leuven (1990)

    MATH  Google Scholar 

  36. Reed, M., Simon, B.: Functional Analysis. Academic Press, New York (1980)

    MATH  Google Scholar 

  37. Rieffel, M.: Induced representations of c*-algebras. Adv. Math. 13, 176–257 (1974)

    MATH  Google Scholar 

  38. Rieffel, M.: Induced representations of c*-algebras. Bull. Am. Math. Soc. 4, 606–609 (1978)

    MATH  Google Scholar 

  39. Rieffel, M.: Deformation quantization of heisenberg manifolds. Commun. Math. Phys. 122, 531–562 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Rieffel, M.: Deformation quantization for actions of \(\mathbb{R}^d\) Memoirs of the American Mathematical Society, American Mathematical Society (1993)

  41. Rieffel, M.: Quantization and C*-algebras. Contemp. Math. 167, 67–97 (1994)

    MathSciNet  MATH  Google Scholar 

  42. Robson, M.: Geometric quantization on homogeneous spaces and the meaning of “inequivalent” quantizations. Phys. Lett. B 335, 383–387 (1994)

    ADS  MathSciNet  Google Scholar 

  43. Robson, M.: Geometric quantization of reduced cotangent bundles. J. Geom. Phys. 19, 207–245 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Rudin, W.: Fourier Analysis on Groups. Wiley, New York (1962)

    MATH  Google Scholar 

  45. Sternberg, S.: Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang–Mills field. Proc. Natl. Acad. Sci. 74(12), 5253–4 (1977)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Waldmann, S.: States and representations in deformation quantization. Rev. Math. Phys. 17(1), 15–75 (2005)

    MathSciNet  MATH  Google Scholar 

  47. Waldmann, S.: Recent developments in deformation quantization. In: Proceedings of the Regensburg Conference on Quantum Mathematical Physics. arXiv:1502.00097v1 (2015)

  48. Weinstein, M.: A universal phase space for particles in Yang–Mills fields. Lett. Math. Phys. 2, 417–20 (1978)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Wu, T., Yang, C.: Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D 12, 3845–3857 (1975)

    ADS  MathSciNet  Google Scholar 

  50. Wu, Y.: Quantization of a particle in a background yang-mills field. J. Math. Phys. 39, 867–875 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin H. Feintzeig.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Browning, T.L., Feintzeig, B.H. Classical limits of gauge-invariant states and the choice of algebra for strict quantization. Lett Math Phys 110, 1835–1860 (2020). https://doi.org/10.1007/s11005-020-01278-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-020-01278-w

Keywords

Mathematics Subject Classification

Navigation