Skip to main content
Log in

Cyclic orbifolds of lattice vertex operator algebras having group-like fusions

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let L be an even (positive definite) lattice and \(g\in O(L)\). In this article, we prove that the orbifold vertex operator algebra \(V_{L}^{{\hat{g}}}\) has group-like fusion if and only if g acts trivially on the discriminant group \({\mathcal {D}}(L)=L^*/L\) (or equivalently \((1-g)L^*<L\)). We also determine their fusion rings and the corresponding quadratic space structures when g is fixed point free on L. By applying our method to some coinvariant sublattices of the Leech lattice \(\Lambda \), we prove a conjecture proposed by G. Höhn. In addition, we also discuss a construction of certain holomorphic vertex operator algebras of central charge 24 using the orbifold vertex operator algebra \(V_{\Lambda _g}^{{\hat{g}}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, T., Dong, C., Li, H.: Fusion rules for the vertex operator algebra \(M(1)\) and \(V^+_L\). Commun. Math. Phys. 253(1), 171–219 (2005)

    Article  ADS  Google Scholar 

  2. Abe, T., Lam, C.H., Yamada, H.: Extensions of tensor products of the lattice VOA \(V_{\sqrt{2}A_{p-1}}\). J. Algebra 510, 24–51 (2018). arXiv:1708.06082

    Article  MathSciNet  Google Scholar 

  3. Bakalov, B., Kac, V.G.: Twisted Modules Over Lattice Vertex Algebras, Lie Theory and Its Applications in Physics V, pp. 3–26. World Sci. Publ, River Edge (2004)

    MATH  Google Scholar 

  4. Borcherds, R.E.: Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109, 405–444 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  5. Carnahan, S., Miyamoto, M.: Regularity of fixed-point vertex operator subalgebras. arXiv:1603.05645

  6. Creutizig, T., Kanade, S., McRae, R.: Tensor categories for vertex operator superalgebra extensions. arXiv:1705.05017

  7. Creutizig, T., Kanade, S., McRae, R.: Glueing vertex algebras. arXiv:1906.00119

  8. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer, New York (1999)

    Book  Google Scholar 

  9. Dong, C.: Vertex algebras associated with even lattices. J. Algebra 161, 245–265 (1993)

    Article  MathSciNet  Google Scholar 

  10. Dong, C., Jiao, X., Xu, F.: Quantum dimensions and quantum Galois theory. Trans. Am. Math. Soc. 365, 6441–6469 (2013)

    Article  MathSciNet  Google Scholar 

  11. Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators. Progress in Mathematics, vol. 112. Birkhauser, Boston (1993)

    Book  Google Scholar 

  12. Dong, C., Lepowsky, J.: The algebraic structure of relative twisted vertex operators. J. Pure Appl. Algebra 110, 259–295 (1996)

    Article  MathSciNet  Google Scholar 

  13. Dong, C., Li, H., Mason, G.: Modular-invariance of trace functions in orbifold theory and generalized Moonshine. Commun. Math. Phys. 214, 1–56 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. Dong, C., Mason, G.: On quantum Galois theory. Duke Math. J. 86, 305–321 (1997)

    Article  MathSciNet  Google Scholar 

  15. Dong, C., Mason, G.: Rational vertex operator algebras and the effective central charge. Int. Math. Res. Not. 2004, 2989–3008 (2004)

    Article  MathSciNet  Google Scholar 

  16. Dong, C., Nagatomo, K.: Automorphism groups and twisted modules for lattice vertex operator algebras. In: Jing, N., Misra, K.C. (eds.) Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998). Contemporary Mathematics, vol. 248, pp. 117–133. American Mathematical Society, Providence (1999)

    Chapter  Google Scholar 

  17. Dong, C., Ren, L., Xu, F.: On orbifold theory. Adv. Math. 321, 1–30 (2017)

    Article  MathSciNet  Google Scholar 

  18. Dong, C., Wang, Q.: The structure of parafermion vertex operator algebras: general case. Commun. Math. Phys. 299(3), 783–792 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure and Applied Mathematics, vol. 134. Academic Press, Boston (1988)

    MATH  Google Scholar 

  20. Griess Jr., R.L.: Twelve Sporadic Groups. Springer Monographs in Mathematics. Springer, Berlin (1998)

    Book  Google Scholar 

  21. Griess Jr., R.L., Lam, C.H.: Moonshine paths for 3A and 6A nodes of the extended \(E_8\)-diagram. J. Algebra 379, 85–112 (2013)

    Article  MathSciNet  Google Scholar 

  22. Harada, K., Lang, M.L.: On some sublattices of the Leech lattice. Hokkaido Math. J. 19, 435–446 (1990)

    Article  MathSciNet  Google Scholar 

  23. Höhn, G.: On the genus of the moonshine module. arXiv:1708.05990

  24. Höhn, G., Mason, G.: The 290 fixed-point sublattices of the Leech lattice. J. Algebra 448, 618–637 (2016)

    Article  MathSciNet  Google Scholar 

  25. Höhn, G., Scheithauer, N.R.: A generalized Kac–Moody algebra of rank 14. J. Algebra 404, 222–239 (2014)

    Article  MathSciNet  Google Scholar 

  26. Kawasetsu, K., Lam, C.H., Lin, X.: \({\mathbb{Z}}_2\)-orbifold construction associated with \((-1)\)-isometry and uniqueness of holomorphic vertex operator algebras of central charge 24. Proc. Am. Math. Soc. 146(5), 1937–1950 (2018)

    Article  Google Scholar 

  27. Krauel, M., Miyamoto, M.: A modular invariance property of multivariable trace functions for regular vertex operator algebras. J. Algebra 444, 124–142 (2015)

    Article  MathSciNet  Google Scholar 

  28. Lam, C.H.: On the constructions of holomorphic vertex operator algebras of central charge 24. Commun. Math. Phys. 305, 153–198 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  29. Lam, C.H., Lin, X.: A holomorphic vertex operator algebra of central charge 24 with weight one Lie algebra \(F_{4,6}A_{2,2}\). J. Pure Appl. Algebra 224(3), 1241–1279 (2020)

    Article  MathSciNet  Google Scholar 

  30. Lam, C.H., Shimakura, H.: Quadratic spaces and holomorphic framed vertex operator algebras of central charge 24. Proc. Lond. Math. Soc. 104, 540–576 (2012)

    Article  MathSciNet  Google Scholar 

  31. Lam, C.H., Shimakura, H.: Classification of holomorphic framed vertex operator algebras of central charge 24. Am. J. Math. 137, 111–137 (2015)

    Article  MathSciNet  Google Scholar 

  32. Lam, C.H., Shimakura, H.: Orbifold construction of holomorphic vertex operator algebras associated to inner automorphisms. Commun. Math. Phys. 342, 803–841 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. Lam, C.H., Shimakura, H.: A holomorphic vertex operator algebra of central charge 24 whose weight one Lie algebra has type \(A_{6,7}\). Lett. Math. Phys. 106, 1575–1585 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. Lam, C.H., Shimakura, H.: Construction of holomorphic vertex operator algebras of central charge 24 using the Leech lattice and level \(p\) lattices. Bull. Inst. Math. Acad. Sin. (N.S.) 12(1), 39–70 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Lam, C.H., Shimakura, H.: Reverse orbifold construction and uniqueness of holomorphic vertex operator algebras. Trans. Am. Math. Soc. 372(10), 7001–7024 (2019)

    Article  MathSciNet  Google Scholar 

  36. Lam, C.H., Shimakura, H.: On Orbifold Constructions Associated with the Leech Lattice Vertex Operator Algebra. Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, Cambridge (2018)

    MATH  Google Scholar 

  37. Lam, C.H., Shimakura, H.: Inertia subgroups and uniqueness of holomorphic vertex operator algebras. Transformation group (2019) (accepted)

  38. Lepowsky, J.: Calculus of twisted vertex operators. Proc. Natl. Acad. Sci. USA 82, 8295–8299 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  39. Li, H.: Local systems of vertex operators, vertex superalgebras and modules. J. Pure Appl. Algebra 109(2), 143–195 (1996)

    Article  MathSciNet  Google Scholar 

  40. Lin, X.: Mirror extensions of rational vertex operator algebras. Trans. Am. Math. Soc. 369, 3821–3840 (2017)

    Article  MathSciNet  Google Scholar 

  41. Miyamoto, M.: \(C_2\)-cofiniteness of cyclic-orbifold models. Commun. Math. Phys. 335, 1279–1286 (2015)

    Article  ADS  Google Scholar 

  42. Nikulin, V.V.: Integral symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat. 43, 111–177 (1979)

    MathSciNet  MATH  Google Scholar 

  43. Sagaki, D., Shimakura, H.: Application of a \({\mathbb{Z}}_{3}\)-orbifold construction to the lattice vertex operator algebras associated to Niemeier lattices. Trans. Am. Math. Soc. 368(3), 1621–1646 (2016)

    Article  Google Scholar 

  44. Schellekens, A.N.: Meromorphic \(c=24\) conformal field theories. Commun. Math. Phys. 153, 159–185 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  45. van Ekeren, J., Möller, S., Scheithauer, N.: Construction and classification of holomorphic vertex operator algebras. J. Reine Angew. Math. (2017)

  46. van Ekeren, J., Möller, S., Scheithauer, N.: Dimension formulae in genus zero and uniqueness of vertex operator algebras. Int. Math. Res. Not. arXiv:1704.00478

Download references

Acknowledgements

The author thanks Hiroki Shimakura for simulating discussion and comments. He also thanks the referee for very helpful comments. A preliminary version of this article has been reported in a publication of RIMS, Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching Hung Lam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C. H. Lam was partially supported by a research Grant AS-IA-107-M02 of Academia Sinica and MoST Grant 104-2115-M-001-004-MY3 of Taiwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, C.H. Cyclic orbifolds of lattice vertex operator algebras having group-like fusions. Lett Math Phys 110, 1081–1112 (2020). https://doi.org/10.1007/s11005-019-01251-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01251-2

Keywords

Mathematics Subject Classification

Navigation