Skip to main content
Log in

Conformal classical Yang–Baxter equation, S-equation and \({\mathcal {O}}\)-operators

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Conformal classical Yang–Baxter equation and S-equation naturally appear in the study of Lie conformal bialgebras and left-symmetric conformal bialgebras. In this paper, they are interpreted in terms of a kind of operators, namely \(\mathcal O\)-operators in the conformal sense. Explicitly, the skew-symmetric part of a conformal linear map T where \(T_0=T_\lambda \mid _{\lambda =0}\) is an \({\mathcal {O}}\)-operator in the conformal sense is a skew-symmetric solution of conformal classical Yang–Baxter equation, whereas the symmetric part is a symmetric solution of conformal S-equation. One by-product is that a finite left-symmetric conformal algebra which is a free \({\mathbb {C}}[\partial ]\)-module gives a natural \({\mathcal {O}}\)-operator, and hence, there is a construction of solutions of conformal classical Yang–Baxter equation and conformal S-equation from the former. Another by-product is that the non-degenerate solutions of these two equations correspond to 2-cocycles of Lie conformal algebras and left-symmetric conformal algebras, respectively. We also give a further study on a special class of \({\mathcal {O}}\)-operators called Rota–Baxter operators on Lie conformal algebras, and some explicit examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, C.: A unified algebraic approach to classical Yang–Baxter equation. J. Phys. A Math. Theor. 40, 11073–11082 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bai, C.: Left-symmetric bialgebras and an analogue of the classical Yang–Baxter equation. Commun. Contemp. Math. 10, 221–260 (2008)

    Article  MathSciNet  Google Scholar 

  3. Barakat, A., De sole, A., Kac, V.: Poisson vertex algebras in the theory of Hamiltonian equations. Jpn. J. Math. 4, 141–252 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bakalov, B., Kac, V.: Field algebras. Int. Math. Res. Not. 3, 123–159 (2003)

    Article  MathSciNet  Google Scholar 

  5. Boyallian, C., Kac, V., Liberati, J.: On the classification of subalgebras of \(Cend_N\) and \(gc_N\). J. Algebra 260, 32–63 (2003)

    Article  MathSciNet  Google Scholar 

  6. Bakalov, B., Kac, V., Voronov, A.: Cohomology of conformal algebras. Commun. Math. Phys. 200, 561–598 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. Balinskii, A., Novikov, S.: Poisson brackets of hydrodynamical type. Frobenius algebras and Lie algebras. In: Dokladu AN SSSR, vol. 283, pp. 1036–1039 (1985)

  8. Cheng, S., Kac, V.: Conformal modules. Asian J. Math. 1, 181–193 (1997)

    Article  MathSciNet  Google Scholar 

  9. Cheng, S., Kac, V., Wakimoto, M.: Extensions of conformal modules. In: Topological Field Theory, Primitive Forms and Related Topics (Kyoto), Progress in Mathematics, Birkh\(\ddot{a}\)user, Boston, vol. 160, pp. 33–57 (1998)

  10. D’Andrea, A., Kac, V.: Structure theory of finite conformal algebras. Sel. Math. New ser. 4, 377–418 (1998)

    Article  MathSciNet  Google Scholar 

  11. Dorfman, I.: Dirac Structures and Integrability of Nonlinear Evolution Equations: Nonlinear Science: Theory and Applications. Wiley, Chichester (1993)

    Google Scholar 

  12. Drinfel’d, V.: Hamiltonian structure on the Lie groups, Lie bialgebras and the geometric sense of the classical Yang–Baxter equations. Soviet Math. Dokl. 27, 68–71 (1983)

    MATH  Google Scholar 

  13. Gel’fend, I., Dorfman, I.: Hamiltonian operators and algebraic structures related to them. Funkts. Anal. Prilozhen 13, 13–30 (1979)

    Google Scholar 

  14. Hong, Y., Li, F.: On left-symmetric conformal bialgebras. J. Algebra Appl. 14, 1450079 (2015)

    Article  MathSciNet  Google Scholar 

  15. Hong, Y., Li, F.: Left-symmetric conformal algebras and vertex algebras. J. Pure Appl. Algebra 219, 3543–3567 (2015)

    Article  MathSciNet  Google Scholar 

  16. Kac, V.: Vertex Algebras for Beginners, 2nd edn. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  17. Kac, V.: Formal distribution algebras and conformal algebras. In: Brisbane Congress in Math, Phys (1997)

  18. Kac, V.: The idea of locality. In: Doebner, H.-D., et al. (eds.) Physical Applications and Mathematical Aspects of Geometry, Groups and Algebras, pp. 16–32. World Scientific Publishing, Singapore (1997)

    Google Scholar 

  19. Kolesnikov, P.: Homogeneous averaging operators on simple finite conformal Lie algebras. J. Math. Phys. 56, 071702 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kupershmidt, B.: What a classical \(r\)-matrix really is. J. Nonlinear Math. Phys. 6, 448–488 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  21. Liberati, J.: On conformal bialgebras. J. Algebra 319, 2295–2318 (2008)

    Article  MathSciNet  Google Scholar 

  22. Semonov-Tian-Shansky, M.: What is the classical \(R\)-matrix? Funct. Anal. Appl. 17, 259–272 (1983)

    Article  Google Scholar 

  23. Xu, X.: Quadratic conformal superalgebras. J. Algebra 231, 1–38 (2000)

    Article  MathSciNet  Google Scholar 

  24. Xu, X.: Equivalence of conformal superalgebras to Hamiltonian superoperators. Algebra Colloq. 8, 63–92 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Zel’manov, E.: On a class of local translation invariant Lie algebras. Soviet Math. Dokl. 35, 216–218 (1987)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11425104, 11501515, 11931009), the Zhejiang Provincial Natural Science Foundation of China (LY20A010022) and the Scientific Research Foundation of Hangzhou Normal University (2019QDL012). C. Bai is also supported by the Fundamental Research Funds for the Central Universities and Nankai ZhiDe Foundation. This work was carried out during the first author’s stay at Chern Institute of Mathematics, Tianjin, China, from April 10 to April 24, 2016, and he would like to thank the CIM for its support and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyong Hong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Bai, C. Conformal classical Yang–Baxter equation, S-equation and \({\mathcal {O}}\)-operators. Lett Math Phys 110, 885–909 (2020). https://doi.org/10.1007/s11005-019-01243-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01243-2

Keywords

Mathematics Subject Classification

Navigation