Skip to main content
Log in

Thomae’s derivative formulae for trigonal curves

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we prove a Thomae derivative formula for trigonal curves admitting a non-singular affine model. This formula relates the derivatives of theta functions with rational characteristics on the curve to explicit expressions in the branching values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, H. F.: Abel’s Theorem and the Allied Theory of Theta Functions. Cambridge University Press, Cambridge (1897). Reprinted in 1995

  2. Bernatska, J.: General Derivative Thomae Formula for Singular Half-Periods. Pre-print arXiv:1904.09333

  3. Bershadsky, M., Radul, A.: Conformal field theories with additional \(Z_{N}\) symmetry. Int. J. Mod. Phys. A 2, 165–178 (1987)

    Article  ADS  Google Scholar 

  4. Bershadsky, M., Radul, A.: Fermionic fields on \(Z_{n}\) curves. Commun. Math. Phys. 116, 689–700 (1988)

    Article  ADS  Google Scholar 

  5. Dubrovin, B.: Theta-functions and nonlinear equations. Uspekhi Matem. Nauk 36, 11–92 (1981)

    MathSciNet  MATH  Google Scholar 

  6. Ebin, D., Farkas, H.M.: Thomae formulae for \(Z_{n}\) curves. J. Anal. Math. 111, 289–320 (2010)

    Article  MathSciNet  Google Scholar 

  7. Eilbeck, J.C., Matsutani, S., Ônishi, Y.: Addition formulae for Abelian functions associated with specialized curves. Philos. Trans. R. Soc. A 369, 1245–1263 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. Eilers, K.: Rosenhain–Thomae formulae for higher genera hyperelliptic curves. J. Nonlinear Math. Phys. 25(1), 85–105 (2018)

    Article  MathSciNet  Google Scholar 

  9. Eisenmann, A., Farkas, H.M.: An elementary proof of Thomae’s formulae. OJAC 3 (2008)

  10. Enolskii, V.Z., Grava, T.: Thomae type formulae for singular \(Z_{N}\) curves. Lett. Math. Phys. 76(2–3), 187–221 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Enolskii, V.Z., Richter, P.: Periods of hyperelliptic integrals expressed in terms of \(\theta \)-constants by means of Thomae formulae. Philos. Lond. Trans. R. Soc. Ser. A Math. Phys. Eng. Sci. 366(1867), 1005–1024 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. Fay, J.D.: Theta Functions on Riemann Surfaces. Lecture Notes in Mathematics, vol. 352, p. v+133. Springer, Berlin (1973)

    Book  Google Scholar 

  13. Fay, J.D.: On the Riemann-Jacobi Formula, Nachrichten der Akadedemie der Wissenschaften in Göttingen. II. Mathematisch-Physikalische Klasse 5, 61–73 (1979)

    Google Scholar 

  14. Farkas, H.M., Kra, I.: Riemann Surfaces, Graduate Text in Mathematics 71, p. 354. Springer, Berlin (1980)

    Google Scholar 

  15. Farkas, H. M., Zemel, S.: Generalizations of Thomae’s Formula for \(Z_{n}\) curves, DEVM 21, p. xi+354. Springer, Berlin (2011)

  16. Kopeliovich, Y.: Thomae formula for general cyclic covers of \({{\mathbb{CP}}}^{1}\). Lett. Math. Phys. 94(3), 313–333 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kopeliovich, Y., Zemel, S.: On spaces associated with invariant divisors on galois covers of Riemann surfaces and their applications. Isr. J. Math. https://doi.org/10.1007/s11856-019-1946-7

  18. Kopeliovich, Y., Zemel, S.: Thomae formula for Abelian covers of \(\mathbb{CP}^{1}\). Trans. Am. Math. Soc. 372, 7025–7069 (2019)

    Article  Google Scholar 

  19. Matsumoto, K., Tomohide, T.: Degenerations of triple covering and Thomae’s formula. arXiv:1001.4950

  20. Nakayashiki, A.: On the Thomae formula for \(Z_{N}\) curves. Publ. Res. Inst. Math. Sci. 33(6), 987–1015 (1997)

    Article  MathSciNet  Google Scholar 

  21. Rosenhain, G.: Abhandlung über die Funktionen zweier Variablen mit vier Perioden. Mém. prés. l’Acad. de Sci. de France des savants, XI:361–455 (1851). The paper is dated 1846. German Translation: H. Weber (Ed.), Engelmann-Verlag, Leipzig (1895)

  22. Thomae, C.J.: Bestimmung von \(\rm d\log \theta (0,\ldots,0)\) durch die Klassmoduln. J. Reine Angew. Math. 66, 92–96 (1866)

    MathSciNet  Google Scholar 

  23. Thomae, C.J.: Beitrag zur Bestimmung von \(\theta (0,\ldots,0)\) durch die Klassmoduln Algebraischer Funktionen. J. Reine Angew. Math. 71, 201–222 (1870)

    MathSciNet  MATH  Google Scholar 

  24. Zemel, S.: Thomae formulae for general fully ramified \(Z_{n}\) curves. J. Anal. Math. 131, 101–158 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaul Zemel.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Victor Enolski: Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enolski, V., Kopeliovich, Y. & Zemel, S. Thomae’s derivative formulae for trigonal curves. Lett Math Phys 110, 611–637 (2020). https://doi.org/10.1007/s11005-019-01233-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01233-4

Keywords

Mathematics Subject Classification

Navigation