Skip to main content
Log in

Wick rotation of the time variables for two-point functions on analytic backgrounds

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We set up a general framework for Calderón projectors (and their generalization to non-compact manifolds), associated with complex Laplacians obtained by Wick rotation of a Lorentzian metric. In the analytic case, we use this to show that the Laplacian’s Green’s functions have analytic continuations whose boundary values are two-point functions of analytic Hadamard states. The result does not require the metric to be stationary. As an aside, we describe how thermal states are obtained as a special case of this construction if the coefficients are time independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammann, B., Grosse, N., Nistor, V.: Well-posedness of the Laplacian on manifolds with boundary and bounded geometry. Math. Nachr. 292(6), 1213–1237 (2019)

    Article  MathSciNet  Google Scholar 

  2. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics II, 2nd edn. Springer, Berlin (2002)

    MATH  Google Scholar 

  3. Candelas, P., Raine, D.J.: Feynman propagator in curved space-time. Phys. Rev. D 15(6), 1494–1500 (1977)

    Article  ADS  Google Scholar 

  4. Chruściel, P.T., Delay, E.: Non-singular, vacuum, stationary space-times with a negative cosmological constant. Ann. Henri Poincaré 8, 219–239 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. Dang, N.V.: Renormalization of determinant lines in quantum field theory, preprint arXiv:1901.10542 (2019)

  6. Dappiaggi, C., Drago, N., Rinaldi, P.: The algebra of Wick polynomials of a scalar field on a Riemannian manifold, preprint arXiv:1901.10542 (2019)

  7. Dereziński, J., Siemssen, D.: Feynman propagators on static spacetimes. Rev. Math. Phys. 30(03), 1850006 (2018)

    Article  MathSciNet  Google Scholar 

  8. Dang, N.V., Zhang, B.: Renormalization of Feynman amplitudes on manifolds by spectral zeta regularization and blow-ups, preprint arXiv:1903.01258 (2019)

  9. Fulling, S.A., Ruijsenaars, S.N.: Temperature, periodicity and horizons. Phys. Rep. 152, 135–176 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  10. Gérard, C.: On the Hartle–Hawking–Israel states for spacetimes with static bifurcate Killing horizons, preprint arXiv:1608.06739 (2016)

  11. Gérard, C.: The Hartle–Hawking–Israel state on stationary black hole spacetimes, preprint arXiv:1806.07645 (2018)

  12. Gérard, C.: Microlocal Analysis of Quantum Fields on Curved Spacetimes, preprint arXiv:1901.10175 (2019)

  13. Gell-Redman, J., Haber, N., Vasy, A.: The Feynman propagator on perturbations of Minkowski space. Commun. Math. Phys. 342(1), 333–384 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Grubb, G.: Distributions and Operators. Graduate Texts in Mathematics. Springer, Berlin (2009)

    Google Scholar 

  15. Glimm, J., Jaffe, A.: Quantum Physics: A Functional Integral Point of View. Springer, Berlin (1987)

    Book  Google Scholar 

  16. Grosse, N., Nistor, V.: Neumann and mixed problems on manifolds with boundary and bounded geometry, preprint arXiv:1703.07228 (2017)

  17. Gérard, C., Wrochna, M.: Analytic Hadamard states, Calderón projectors and Wick rotation near analytic Cauchy surfaces. Commun. Math. Phys. 366(1), 29–65 (2019)

    Article  ADS  Google Scholar 

  18. Hack, T.-P., Moretti, V.: On the stress-energy tensor of quantum fields in curved spacetimes—comparison of different regularization schemes and symmetry of the Hadamard/Seeley-DeWitt coefficients. J. Phys. A Math. Theor. 45, 374019 (2012)

    Article  MathSciNet  Google Scholar 

  19. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. 3. Springer, Berlin (1994)

    Google Scholar 

  20. Komatsu, H.: Microlocal analysis in Gevrey classes and in complex domains. In: Cattabriga, L., Rodino, L. (eds.) Microlocal Analysis and Applications. C.I.M.E. Lectures Montecatini Terme. Springer, Berlin (1989)

    Google Scholar 

  21. Moretti, V.: One-loop stress-tensor renormalization in curved background: the relation between \(\zeta \)-function and point-splitting approaches, and an improved point-splitting procedure. J. Math. Phys. 40(8), 3843–3875 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  22. Moretti, V.: Proof of the symmetry of the off-diagonal Hadamard/Seeley–deWitt’s coefficients in \(C^\infty \) Lorentzian manifolds by a ‘local Wick rotation’. Commun. Math. Phys. 212, 165 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  23. Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  24. Sanders, K.: Thermal equilibrium states of a linear scalar quantum field in stationary spacetimes. Int. J. Mod. Phys. A 28, 1330010 (2013)

    Article  ADS  Google Scholar 

  25. Sanders, K.: On the construction of Hartle–Hawking–Israel state across a static bifurcate Killing horizon. Lett. Math. Phys. 105(4), 575–640 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Schapira, P.: Wick rotation for \(D\)-modules. Math. Phys. Anal. Geom. 20, 21 (2017)

    Article  MathSciNet  Google Scholar 

  27. Sewell, G.L.: Relativity of temperature and the Hawking effect. Phys. Lett. A 79, 23–24 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  28. Sahlmann, H., Verch, R.: Passivity and microlocal spectrum condition. Commun. Math. Phys. 214, 705–731 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  29. Strohmaier, A., Verch, R., Wollenberg, M.: Microlocal analysis of quantum fields on curved space-times: analytic wave front sets and Reeh–Schlieder theorems. J. Math. Phys. 43, 5514–5530 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  30. Wald, R.M.: On the Euclidean approach to quantum field theory in curved spacetime. Commun. Math. Phys. 70(3), 221–242 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  31. Witten, E.: Invited article on entanglement properties of quantum field theory. Rev. Mod. Phys. 90, 045003 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is very grateful to Christian Gérard for inspiring discussions and helpful suggestions, and would also like to thank the anonymous referees for their help in improving the paper. Support from the Grant ANR-16-CE40-0012-01 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Wrochna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wrochna, M. Wick rotation of the time variables for two-point functions on analytic backgrounds. Lett Math Phys 110, 585–609 (2020). https://doi.org/10.1007/s11005-019-01230-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01230-7

Keywords

Mathematics Subject Classification

Navigation