Skip to main content
Log in

Ruelle zeta function for cofinite hyperbolic Riemann surfaces with ramification points

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Ruelle zeta function R(s) of a genus g hyperbolic Riemann surface with n punctures and v ramification points. R(s) is equal to \(Z(s)/Z(s+1)\), where Z(s) is the Selberg zeta function. The main result of this work is the leading behavior of R(s) at \(s=0\). If \(n_0\) is the order of the determinant of the scattering matrix \(\varphi (s)\) at \(s=0\), we find that

$$\begin{aligned} \lim _{s\rightarrow 0}\frac{R(s)}{s^{2g-2+n-n_0}}=(-1)^{\frac{A}{2}+1}(2\pi )^{2g-2+n }{\tilde{\varphi }}(0)^{-1} \prod _{j=1}^v m_j, \end{aligned}$$

which says that R(s) has order \(2g-2+n-n_0\) at \(s=0\), and its leading coefficient can be expressed in terms of \(m_1\), \(m_2\), \(\ldots \), \(m_v\), the ramification indices at the ramification points, and \({\tilde{\varphi }}(0)\), the leading coefficient of \(\varphi (s)\) at \(s=0\). The constant A is an even integer, equal to twice the multiplicity of the eigenvalue \(-\,1\) in the scattering matrix \(\Phi (s)\) at \(s=1/2\), and \((-1)^{\frac{A}{2}}=\varphi \left( \frac{1}{2}\right) \). We also consider the order of the Ruelle zeta function at other integers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevskii, V.P.: On functions similar to the gamma function. In: Communications and Proceedings of the Kharkov Mathematical Society, vol. 1, pp. 169–238 (1889) (Russian)

  2. Barnes, E.W.: The theory of the \(G\)-function. Q. J. Math. 31, 264–314 (1900)

    MATH  Google Scholar 

  3. D’Hoker, E., Phong, D.H.: On determinants of Laplacians on Riemann surfaces. Commun. Math. Phys. 104, 537–545 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  4. Dyatlov, S., Zworski, M.: Ruelle zeta function at zero for surfaces. Invent. Math. 210, 211–229 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Efrat, I.: Determinants of Laplacians on surfaces of finite volume. Commun. Math. Phys. 119, 443–451 (1988) Erratum: Commun. Math. Phys. 138, 607 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. Fischer, J.: An approach to the Selberg trace formula via the Selberg zeta function. Lecture Notes in Mathematics, vol. 1253. Springer (1987)

  7. Fried, D.: The zeta functions of Ruelle and Selberg. I. Ann. Sci. EcoleNorm. Sup. 19, 491–517 (1986)

    Article  MathSciNet  Google Scholar 

  8. Fried, D.: Analytic torsion and closed geodesics on hyperbolic manifolds. Invent. Math. 84, 523–540 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  9. Fried, D.: Fuchsian groups and Reidemeister torsion. In: The Selberg Trace Formula and Related Topics, Brunswick, Maine, 1984. In: Contemp. Math., vol. 53. American Mathematical Society, Providence, RI, pp. 141–163 (1986)

  10. Gon, Y.: Gamma factors of Selberg zeta functions and functional equation of Ruelle zeta functions. Math. Ann. 308, 251–278 (1997)

    Article  MathSciNet  Google Scholar 

  11. Gon, Y.: Differences of the Selberg trace formula and Selberg type zeta functions for Hilbert modular surfaces. J. Number Theory 147, 396–453 (2015)

    Article  MathSciNet  Google Scholar 

  12. Gon, Y., Park, J.: Ruelle zeta function for odd dimensional hyperbolic manifolds with cusps. Proc. Jpn. Acad. Ser. A Math. Sci. 84, 1–4 (2008)

    Article  MathSciNet  Google Scholar 

  13. Gon, Y., Park, I.: The zeta functions of Ruelle and Selberg for hyperbolic manifolds with cusps. Math. Ann. 346, 719–767 (2010)

    Article  MathSciNet  Google Scholar 

  14. Gong, D.: Zeta-determinant and torsion functions on Riemann surfaces of finite volume. Manuscr. Math. 86, 435–454 (1995)

    Article  MathSciNet  Google Scholar 

  15. Gradshteyn, I.S., Ryzhik, L.M.: Table of Integrals, Series and Products. Academic Press, Cambridge (2000)

    MATH  Google Scholar 

  16. Hejhal, D.: The Selberg trace formula for PSL(2, \({\mathbb{R}}\)). Lecture Notes in Mathematics, vol. 548. Springer (1976)

  17. Hejhal, D.: The Selberg trace formula for PSL(2, \({\mathbb{R}}\)). Lecture Notes in Mathematics, vol. 1001. Springer (1983)

  18. Iwaniec, H.: Spectral Methods of Automorphic Forms. American Mathematical Society, Providence (2002)

    Book  Google Scholar 

  19. Koyama, S.-Y.: Determinant expression of Selberg zeta functions (I). Trans. Am. Math. Soc. 324, 149–168 (1991)

    Article  MathSciNet  Google Scholar 

  20. Koyama, S.-Y.: Determinant expression of Selberg zeta functions (III). Proc. Am. Math. Soc. 113, 303–311 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Momeni, A., Venkov, A.: Zeta functions and regularized determinants related to the Selberg trace formula. arXiv:1108.5659

  22. Park, J.: Analytic torsion and Ruelle zeta functions for hyperbolic manifolds with cusps. J. Funct. Anal. 257, 1713–1758 (2009)

    Article  MathSciNet  Google Scholar 

  23. Ruelle, D.: Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34, 231–242 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  24. Sarnak, P.: Determinants of Laplacians. Commun. Math. Phys. 110, 113–120 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  25. Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian. Math. Soc. B 20, 47–87 (1956)

    MathSciNet  MATH  Google Scholar 

  26. Takhtajan, L.A., Zograf, P.G.: A local index theorem for families of \({\bar{\partial }}\)-operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces. Commun. Math. Phys. 137, 399–426 (1991)

    Article  ADS  Google Scholar 

  27. Takhtajan, L.A., Zograf, P.: Local index theorem for orbifold Riemann surfaces. Lett. Math. Phys. 109, 1119–1143 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  28. Venkov, A.B., Kalinin V.L., Faddeev, L.D.: A nonarithmetic derivation of the Selberg trace formula. J. Soviet Math. 8, 177–199 (1977). Translated from Zapiski Nauchnykh Seminarov Leningradskogo OtdeleniyaMatematicheskogo Instituta im. Vo A. Steklova AN SSSR 37, 5–42 (1973)

    Article  Google Scholar 

  29. Venkov, A.B.: Spectral theory of automorphic functions. Proc. Steklov Inst. Math. 153, 1–163 (1982)

    MathSciNet  MATH  Google Scholar 

  30. Voros, A.: Spectral functions, special functions and the Selberg zeta function. Commun. Math. Phys. 110, 439–465 (1987)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Education of Malaysia under FRGS Grant FRGS/1/2018/STG06/XMU/01/1. We would also like to thank L. Takhtajan and J. Friedman who have given helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee-Peng Teo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teo, LP. Ruelle zeta function for cofinite hyperbolic Riemann surfaces with ramification points. Lett Math Phys 110, 61–82 (2020). https://doi.org/10.1007/s11005-019-01222-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01222-7

Keywords

Mathematics Subject Classification

Navigation