Homotopy algebras of differential (super)forms in three and four dimensions
Abstract
We consider various \(A_{\infty }\)-algebras of differential (super)forms, which are related to gauge theories and demonstrate explicitly how certain reformulations of gauge theories lead to the transfer of the corresponding \(A_{\infty }\)-structures. In addition, for \(N=2\) 3D space, we construct the homotopic counterpart of the de Rham complex, which is related to the superfield formulation of the \(N=2\) Chern–Simons theory.
Keywords
Supersymmetric field theories Homotopical algebra SupergeometryMathematics Subject Classification
18G55 81T60 83E30Notes
Acknowledgements
We are grateful to K. Costello, M. Markl, M. Movshev and J. Stasheff for illuminating discussions. We are indebted to the valuable comments of the referee. We would like to express our gratitude to the wonderful environment of Simons Summer Workshops where this work was partially done. A.M.Z. is grateful to A.N. Fedorova for careful reading of the manuscript.
References
- 1.Aharony, O., Bergman, O., Jafferis, D.L., Maldacena, J.: \(N = 6\) Superconformal Chern–Simons–Matter Theories, \(M2\)-Branes and Their Gravity Duals (2008). arXiv:0806.1218
- 2.Benna, M., Klebanov, I., Klose, T., Smedbaeck, M.: Superconformal Chern–Simons Theories and \(AdS_4/CFT_3\) Correspondence (2008). arXiv:0806.1519
- 3.Costello, K.: Renormalisation and Batalin–Vilkovisky Formalism (2007). arXiv:0706.1533
- 4.Gaberdiel, M., Zwiebach, B.: Tensor constructions of open string theories I: foundations. Nucl. Phys. B 505, 569 (1997). arXiv:hep-th/9705038 ADSMathSciNetCrossRefGoogle Scholar
- 5.Gates, S.J., Grisaru, M.T., Rocek, M., Siegel, W.: One thousand and one lecture on supersymmetry. Front. Phys. 58, 1–548 (1983)zbMATHGoogle Scholar
- 6.Gover, A.R., Hallowell, K., Waldron, A.: Higher Spin Gravitational Couplings and Yang–Mills Detour Complex (2006). arXiv:hep-th/0606160
- 7.Gover, A.R., Somberg, P., Soucek, V.: Yang–Mills Detour Complexes and Conformal Geometry (2006). arXiv:math.DG/0606401
- 8.Gugenheim, V.K.A.M., Stasheff, J.D.: On perturbations and \(A_{\infty }\)-structures. Bull. Soc. Math. Belg. 38, 237–246 (1986)MathSciNetzbMATHGoogle Scholar
- 9.Hohm, O., Zwiebach, B.: L-Infinity Algebras and Field Theory (2017). arXiv:1701.08824
- 10.Huebschmann, J.: On the Construction of \(A_{\infty }\) Structures (2008). arXiv:0809.4791
- 11.Kajiura, H.: Noncommutative Homotopy Algebras Associated with Open Strings (2003). arXiv:math.QA/0306332
- 12.Keller, B.: Introduction to A-Infinity Algebras and Modules (1999). arXiv:math/9910179
- 13.Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. In: “Symplectic Geometry and String Theory”, Proceedings of KIAS Conference, Seoul, (2001). arXiv:math.SG/0011041
- 14.Markl, M.: Transferring \(A_{\infty }\) (Strongly Homotopy Associative) Structures (2004). arXiv:math/0401007
- 15.Markl, M., Shnider, S., Stasheff, J.D.: Operads in Algebra, Topology and Physics, Mathematical Surveys and Monographs, vol. 90. AMS, Providence (2002)zbMATHGoogle Scholar
- 16.Merkulov, S.A.: Strongly homotopy algebras of a Kähler manifold. IMRN 3, 153 (1999). arXiv:math.AG/9809172 MathSciNetCrossRefGoogle Scholar
- 17.Movshev, M., Schwarz, A.: Algebraic structure of Yang–Mills theory. Prog. Math. 244, 473–523 (2006)MathSciNetCrossRefGoogle Scholar
- 18.Stasheff, J.D.: Homotopy associativity of H-spaces I, II. Trans. Am. Math. Soc. 108, 275312 (1963)MathSciNetzbMATHGoogle Scholar
- 19.Vasiliev, M.A.: Actions, charges and off-shell fields in the unfolded dynamics approach. Int. J. Geom. Methods Mod. Phys. 3, 37–80 (2006)MathSciNetCrossRefGoogle Scholar
- 20.Vasiliev, M.A.: On conformal, SL(4, R) and Sp(8, R) symmetries of 4D massless fields. Nucl. Phys. B 793, 469–526 (2008)ADSCrossRefGoogle Scholar
- 21.Zeitlin, A.M.: Homotopy Lie superalgebra in Yang–Mills theory. JHEP 0709, 068 (2007). arXiv:0708.1773 ADSMathSciNetCrossRefGoogle Scholar
- 22.Zeitlin, A.M.: BV Yang–Mills as a homotopy Chern–Simons via SFT. Int. J. Mod. Phys. A 24, 1309–1331 (2009). arXiv:0709.1411 ADSCrossRefGoogle Scholar
- 23.Zeitlin, A.M.: SFT-inspired algebraic structures in Gauge theories. J. Math. Phys. 50, 063501 (2009). arXiv:0711.3843 ADSMathSciNetCrossRefGoogle Scholar
- 24.Zeitlin, A.M.: Conformal field theory and algebraic structure of Gauge theory. JHEP 03, 056 (2010). arXiv:0812.1840 ADSMathSciNetCrossRefGoogle Scholar
- 25.Zeitlin, A.M.: Beta-gamma systems and the deformations of the BRST operator. J. Phys. A 42, 355401 (2009). arXiv:0904.2234 MathSciNetCrossRefGoogle Scholar
- 26.Zeitlin, A.M.: Quasiclassical Lian–Zuckerman homotopy algebras, courant algebroids and Gauge theory. Commun. Math. Phys. 303, 331–359 (2010). arXiv:0910.3652 ADSMathSciNetCrossRefGoogle Scholar
- 27.Zupnik, B.M., Pak, D.G.: Superfield formulation of the simplest three-dimensional gauge theories and conformal supergravities. Teor. Mat. Fiz. 77, 97 (1988)MathSciNetCrossRefGoogle Scholar