Abstract
The linearization of equilibria of Hamiltonian systems is Hamiltonian; this has well-known and important implications for the spectrum. The analogous statement for nonholonomic systems is provided. It follows, for example, that the linearization of the ground state of a nonholonomic system is always Hamiltonian.
This is a preview of subscription content, access via your institution.
References
Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Addison-Wesley, Boston (1978)
Bates, L., Sniatycki, J.: Nonholonomic reduction. Rep. Math. Phys. 32, 99–115 (1993)
Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the \(N\)-Body Problem. Springer, New York (1991)
Patrick, G.W.: Variational development of the geometry of nonholonomic mechanics. Rep. Math. Phys. 59, 145–184 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Patrick, G.W. The intrinsic linearization of equilibria of nonholonomic systems. Lett Math Phys 108, 2487–2490 (2018). https://doi.org/10.1007/s11005-018-1089-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11005-018-1089-5