Local index theorem for orbifold Riemann surfaces


We derive a local index theorem in Quillen’s form for families of Cauchy–Riemann operators on orbifold Riemann surfaces (or Riemann orbisurfaces) that are quotients of the hyperbolic plane by the action of cofinite finitely generated Fuchsian groups. Each conical point (or a conjugacy class of primitive elliptic elements in the Fuchsian group) gives rise to an extra term in the local index theorem that is proportional to the symplectic form of a new Kähler metric on the moduli space of Riemann orbisurfaces. We find a simple formula for a local Kähler potential of the elliptic metric and show that when the order of elliptic element becomes large, the elliptic metric converges to the cuspidal one corresponding to a puncture on the orbisurface (or a conjugacy class of primitive parabolic elements). We also give a simple example of a relation between the elliptic metric and special values of Selberg’s zeta function.

This is a preview of subscription content, access via your institution.


  1. 1.

    Ahlfors, L.V.: Some remarks on Teichmüller’s space of Riemann surfaces. Ann. Math. 74, 171–191 (1961)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Belavin, A.A., Knizhnik, V.G.: Complex geometry and the theory of quantum strings. JETP 91, 364–390 (1986). (Russian) [English. transl. in: Sov. Phys. JETP 64 (1986), 214–228]

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Bers, L.: Deformations and moduli of Riemann surfaces with nodes and signatures. Math. Scand. 36, 12–16 (1975)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Bismut, J.-M., Bost, J.B.: Fibrés déterminant, métriques de Quillen et dégénérescence des courbes. Acta Math. 165, 1–103 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Bismut, J.-M., Gillet, H., Soule, C.: Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion. Commun. Math. Phys. 115, 49–78 (1988)

  6. 6.

    Can, T.: Central charge from adiabatic transport of cusp singularities in the quantum Hall effect. J. Phys. A Math. Theor. 50(17), 174004 (2017)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  7. 7.

    D’Hoker, E., Phong, D.H.: On determinants of Laplacians on Riemann surfaces. Commun. Math. Phys. 104, 537–545 (1986)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  8. 8.

    Fay, J.D.: Fourier coefficients of the resolvent for a Fuchsian group. J. Reine Angew. Math. 293(294), 143–203 (1977)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    i Montplet, G.F., von Pippich, A.M.: Riemann–Roch isometries in the non-compact orbifold setting. JEMS (to appear)

  10. 10.

    Park, J., Takhtajan, L.A., Teo, L.-P.: Potentials and Chern forms for Weil–Petersson and Takhtajan–Zograf metrics on moduli spaces. Adv. Math. 305, 856–894 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Quillen, D.: Determinants of Cauchy–Riemann operators over a Riemann surface. Funk. Anal. i Prilozen. 19(1), 37–41 (1985). (Russian) [English transl. in: Funct. Anal. Appl. 19 (1985), 31–34]

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Sarnak, P.: Determinants of Laplacians. Commun. Math. Phys. 110, 113–120 (1987)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  13. 13.

    Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University Press, Princeton (1971)

    Google Scholar 

  14. 14.

    Takhtajan, L.A., Zograf, P.G.: A local index theorem for families of \(\bar{\partial }\)-operators on punctured Riemann surfaces and a new Kähler metric on their moduli space. Commun. Math. Phys. 137, 399–429 (1991)

    Article  ADS  Google Scholar 

  15. 15.

    Venkov, A., Zograf, P.: On analogues of the Artin factorization formulas in the spectral theory of automorphic functions connected with induced representations of Fuchsian groups. Izv. Akad. Nauk SSSR Ser. Mat. 46(6), 1150–1158 (1982). [English. transl. in: Mathematics of the USSR-Izvestiya, 21:3 (1983), 435–443]

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Wolpert, S.A.: Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math. 85(1), 119–145 (1986)

    MathSciNet  Article  MATH  ADS  Google Scholar 

  17. 17.

    Wolpert, S.A.: Cusps and the family hyperbolic metric. Duke Math. J. 138(3), 423–443 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Zograf, P.G., Takhtadzhyan, L.A.: A local index theorem for families of \(\bar{\partial }\)-operators on Riemann surfaces. Uspekhi Mat. Nauk. 42(6), 133–150 (1987). (Russian) [English. transl. in: Russian Math. Surveys 42:6 (1987), 169–190]

    MathSciNet  MATH  Google Scholar 

Download references


We thank G. Freixas i Montplet for showing to us a preliminary version of [9] and for stimulating discussions. Our special thanks are to Lee-Peng Teo for carefully reading the manuscript and pointing out to us a number of misprints.

Author information



Corresponding author

Correspondence to Peter Zograf.

Additional information

Supported by RScF Grant 16-11-10039.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takhtajan, L.A., Zograf, P. Local index theorem for orbifold Riemann surfaces. Lett Math Phys 109, 1119–1143 (2019). https://doi.org/10.1007/s11005-018-01144-w

Download citation


  • Fuchsian groups
  • Determinant line bundles
  • Quillen’s metric
  • Local index theorems

Mathematics Subject Classification

  • 14H10
  • 58J20
  • 58J52