Letters in Mathematical Physics

, Volume 108, Issue 5, pp 1341–1350 | Cite as

Obstructions for twist star products

  • Pierre Bieliavsky
  • Chiara Esposito
  • Stefan Waldmann
  • Thomas Weber
Article
  • 36 Downloads

Abstract

In this short note, we point out that not every star product is induced by a Drinfel’d twist by showing that not every Poisson structure is induced by a classical r-matrix. Examples include the higher genus symplectic Pretzel surfaces and the symplectic sphere \({\mathbb {S}}^2\).

Mathematics Subject Classification

53D05 53D55 22F30 22E60 57S25 

Notes

Acknowledgements

We would like to thank Martin Bordemann, Alexander Schenkel and Jonas Schnitzer for valuable discussions and useful suggestions.

References

  1. 1.
    Aschieri, P., Schenkel, A.: Noncommutative connections on bimodules and Drinfel’d twist deformation. Adv. Theor. Math. Phys. 18(3), 513–612 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bayen, F., Flato, M., Frønsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. Ann. Phys. 111, 61–151 (1978)ADSCrossRefMATHGoogle Scholar
  3. 3.
    Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994)MATHGoogle Scholar
  4. 4.
    Drinfel’d, V.G.: On constant quasiclassical solutions of the Yang-Baxter quantum equation. Sov. Math. Dokl. 28, 667–671 (1983)MATHGoogle Scholar
  5. 5.
    Drinfeld, V.G.: Quantum groups. J. Sov. Math. 41, 898–918 (1988)CrossRefGoogle Scholar
  6. 6.
    Etingof, P., Schiffmann, O.: Lectures on Quantum Groups. International Press, Boston (1998)MATHGoogle Scholar
  7. 7.
    Giaquinto, A., Zhang, J.J.: Bialgebra actions, twists, and universal deformation formulas. J. Pure Appl. Algebra 128(2), 133–152 (1998)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Montgomery, D., Samelson, H.: Transformation groups of spheres. Ann. Math. 44(3), 454 (1942)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Mostow, G.D.: The extensibility of local Lie groups of transformations and groups on surfaces. Ann. Math. (2) 52, 606–636 (1950)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Mostow, G.D.: A structure theorem for homogeneous spaces. Geom. Dedic. 114, 87–102 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Onishchik, A.: On lie groups transitive on compact manifolds II. Math. USSR-Sbornik 3(3), 373 (1967)CrossRefMATHGoogle Scholar
  12. 12.
    Onishchik, A.: On lie groups transitive on compact manifolds III. Math. USSR-Sbornik 4(2), 233 (1968)CrossRefMATHGoogle Scholar
  13. 13.
    Onishchik, A.: Lie Groups and Lie Algebras I. Encyclopaedia of Mathematical Sciences. Springer, Berlin (1993)CrossRefGoogle Scholar
  14. 14.
    Palais, R.S.: A global formulation of the Lie theory of transformation groups, 22 (1957)Google Scholar
  15. 15.
    Waldmann, S.: Poisson-Geometrie und Deformationsquantisierung. Eine Einführung. Springer, Heidelberg (2007)MATHGoogle Scholar
  16. 16.
    Weber, T.: Star Products that can not be induced by Drinfel’d Twists. master thesis, University of Würzburg, Würzburg, Germany (2016)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculté des sciences, Ecole de mathématique (MATH)Institut de recherche en mathématique et physique (IRMP)Louvain-la-NeuveBelgium
  2. 2.Institut für Mathematik, Lehrstuhl für Mathematik XUniversität WürzburgWürzburgGermany

Personalised recommendations