Letters in Mathematical Physics

, Volume 108, Issue 5, pp 1279–1306 | Cite as

ASK/PSK-correspondence and the r-map

  • Vicente Cortés
  • Peter-Simon Dieterich
  • Thomas Mohaupt


We formulate a correspondence between affine and projective special Kähler manifolds of the same dimension. As an application, we show that, under this correspondence, the affine special Kähler manifolds in the image of the rigid r-map are mapped to one-parameter deformations of projective special Kähler manifolds in the image of the supergravity r-map. The above one-parameter deformations are interpreted as perturbative \(\alpha '\)-corrections in heterotic and type II string compactifications with \(N=2\) supersymmetry. Also affine special Kähler manifolds with quadratic prepotential are mapped to one-parameter families of projective special Kähler manifolds with quadratic prepotential. We show that the completeness of the deformed supergravity r-map metric depends solely on the (well-understood) completeness of the undeformed metric and the sign of the deformation parameter.


Special real manifolds Special Kähler manifolds r-map 

Mathematics Subject Classification

53C26 (primary) 



This work was partly supported by the German Science Foundation (DFG) under the Research Training Group 1670 and the Collaborative Research Center (SFB) 676. The work of T.M. was partly supported by the STFC consolidated grant ST/G00062X/1. He thanks the Department of Mathematics and the Centre for Mathematical Physics of the University of Hamburg for support and hospitality during various stages of this work.


  1. 1.
    Alekseevsky, D.V., Cortés, V., Devchand, C.: Special complex manifolds. J. Geom. Phys. 42(1), 85–105 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alekseevsky, D.V., Cortés, V., Dyckmanns, M., Mohaupt, T.: Quaternionic Kähler metrics associated with special Kähler manifolds. J. Geom. Phys 92, 271–287 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alekseevsky, D.V., Cortés, V., Mohaupt, T.: Conification of Kähler and hyper-Kähler manifolds. Commun. Math. Phys. 324(2), 637–655 (2013)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    Antoniadis, I., Ferrara, S., Gava, E., Narain, K.S., Taylor, T.R.: Perturbative prepotential and monodromies in \(N=2\) heterotic superstring. Nucl. Phys. B 447(1), 35–61 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Antoniadis, I., Ferrara, S., Taylor, T.R.: \(N=2\) heterotic superstring and its dual theory in five dimensions. Nucl. Phys. B 460(3), 489–505 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Aspinwall, P.S.: K3 surfaces and string duality, Preprint arXiv:hep-th/9611137 (1996)
  7. 7.
    Behrndt, K., Cardoso, G.L., de Wit, B., Kallosh, R., Lüst, D., Mohaupt, T.: Classical and quantum \(N=2\) supersymmetric black holes. Nucl. Phys. B 488(1–2), 236–260 (1997)ADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    Bellucci, S., Marrani, A., Roychowdhury, R.: Topics in cubic special geometry. J. Math. Phys. 52, 1–29 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bonanos, S.: Capabilities of the mathematica package “Riemannian Geometry and Tensor Calculus”. In: Proceedings of the 10th Hellenic Relativity Conference on Recent Developments in Gravity: Kalithea/Chalkidiki, Greece, 30 May—2 June 2002, p. 174 (2003)Google Scholar
  10. 10.
    Cadavid, A.C., Ceresole, A., D’Auria, R.: 11-dimensional supergravity compactified on Calabi–Yau threefolds. Phys. Lett. B 357(1–2), 76–80 (1995)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Candelas, P., de la Ossa, X.C., Green, P.S., Parkes, L.: A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359(1), 21–74 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cecotti, S., Ferrara, S., Girardello, L.: Geometry of type II superstrings and the moduli of superconformal field theories. Int. J. Mod. Phys. A 4(10), 2475–2529 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ceresole, A., D’Auria, R., Ferrara, S., Van Proeyen, A.: Duality transformations in supersymmetric yang-mills theories coupled to supergravity. Nucl. Phys. B 444(1–2), 92–124 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cortés, V., Dyckmanns, M., Suhr, S.: Completeness of projective special Kähler and quaternionic Kähler manifolds. In: Chiossi, S., Fino, A., Musso, E., Podestà, F., Vezzoni, L. (eds.) Special Metrics and Group Actions in Geometry. Springer INdAM Series, vol 23. Springer, Cham (2017).Google Scholar
  15. 15.
    Cortés, V., Han, X., Mohaupt, T.: Completeness in supergravity constructions. Commun. Math. Phys 311(1), 191–213 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cortés, V., Nardmann, M., Suhr, S.: Completeness of hyperbolic centroaffine hypersurfaces. Commun. Anal. Geom 24(1), 59–92 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    de Wit, B.: \(N=2\) electric-magnetic duality in a chiral background. Nucl. Phys. B 49(1–3), 191–200 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    de Wit, B., Kaplunovsky, V., Louis, J., Lüst, D.: Perturbative couplings of vector multiplets in \(N=2\) heterotic string vacua. Nucl. Phys. B 451(1–2), 53–95 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    de Wit, B., Van Proeyen, A.: Special geometry, cubic polynomials and homogeneous quaternionic spaces. Commun. Math. Phys 149(2), 307–333 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ferrara, S., Sabharwal, S.: Quaternionic manifolds for type II superstring vacua of Calabi–Yau spaces. Nucl. Phys. B 332(2), 317–332 (1990)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Grisaru, M.T., Van de Ven, A.E.M., Zanon, D.: Four-loop divergences for the \(N=1\) supersymmetric non-linear sigma-model in two dimensions. Nucl. Phys. B 277, 409–428 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    Haydys, A.: HyperKähler and quaternionic Kähler manifolds with \(S^1\)-symmetries. J. Geom. Phys. 58(3), 293–306 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hitchin, N.: Quaternionic Kähler moduli spaces, Riemannian topology and geometric structures on manifolds, pp. 49–61 (2009)Google Scholar
  24. 24.
    Hosono, S., Klemm, A., Theisen, S., Yau, S.-T.: Mirror symmetry, mirror map and applications to Calabi–Yau hypersurfaces. Commun. Math. Phys 167(2), 301–350 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Harvey, J.A., Moore, G.: Algebras, BPS states, and strings. Nucl. Phys. B 463(2–3), 315–368 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 1. Wiley, London (1963)zbMATHGoogle Scholar
  27. 27.
    Louis, J., Sonnenschein, J., Theisen, S., Yankielowicz, S.: Non-perturbative properties of heterotic string vacua compactified on \(K3\times T2\). Nucl. Phys. B 480(1–2), 185–212 (1996)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Macia, O., Swann, A.: Elementary deformations and the hyperKähler-quaternionic Kähler correspondence. In: Real and Complex Submanifolds, Daejoen, Korea, Aug 2014, Springer Proceedings of Mathematics and Statistics, Vol. 106. Springer, Tokyo (2014)Google Scholar
  29. 29.
    Nemeschansky, D., Sen, A.: Conformal invariance of supersymmetric \(\sigma \)-models on Calabi–Yau manifolds. Phys. Lett. B 178(4), 365–369 (1986)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Wolfram Research, Inc., Mathematica 10.0Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Vicente Cortés
    • 1
  • Peter-Simon Dieterich
    • 1
  • Thomas Mohaupt
    • 2
  1. 1.Department of Mathematics, Center for Mathematical PhysicsUniversity of HamburgHamburgGermany
  2. 2.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations