Letters in Mathematical Physics

, Volume 108, Issue 5, pp 1225–1277 | Cite as

The FKMM-invariant in low dimension

  • Giuseppe De Nittis
  • Kiyonori Gomi


In this paper, we investigate the problem of the cohomological classification of “Quaternionic” vector bundles in low dimension (\(d\leqslant 3\)). We show that there exists a characteristic class \(\kappa \), called the FKMM-invariant, which takes value in the relative equivariant Borel cohomology and completely classifies “Quaternionic” vector bundles in low dimension. The main subject of the paper concerns a discussion about the surjectivity of \(\kappa \).


“Quaternionic” vector bundles FKMM-invariant Characteristic classes Topological quantum systems 

Mathematics Subject Classification

Primary 57R22 Secondary 53A55 55N25 53C80 



GD’s research is supported by the Grant Iniciación en Investigación 2015—No. 11150143 funded by FONDECYT. KG’s research is supported by the JSPS KAKENHI Grant No. 15K04871.


  1. 1.
    Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in quantum theory. Phys. Rev. 115, 485–491 (1959)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ando, Y., Fu, L.: Topological crystalline insulators and topological superconductors: from concepts to materials. Annu. Rev. Cond. Matter Phys. 6, 361–381 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders College Publications, Philadelphia (1976)MATHGoogle Scholar
  4. 4.
    Allday, C., Puppe, V.: Cohomological Methods in Transformation Groups. Cambridge University Press, Cambridge (1993)CrossRefMATHGoogle Scholar
  5. 5.
    Atiyah, M.F.: \(K\)-theory and reality. Q. J. Math. Oxf. Ser. 2(17), 367–386 (1966)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Atiyah, M.F.: \(K\)-Theory. W. A. Benjamin, New York (1967)MATHGoogle Scholar
  7. 7.
    Baer, M.: Beyond Born–Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections. Wiley, Hoboken (2006)CrossRefMATHGoogle Scholar
  8. 8.
    Bourne, C., Carey, A.L., Rennie, A.: A noncommutative framework for topological insulators. Rev. Math. Phys. 28, 1650004 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bellissard, J., van Elst, A., Schulz-Baldes, H.: The non-commutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373–5451 (1994)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Böhm, A., Mostafazadeh, A., Koizumi, H., Niu, Q., Zwanziger, J.: The Geometric Phase in Quantum Systems. Springer, Berlin (2003)CrossRefMATHGoogle Scholar
  12. 12.
    Borel, A.: Seminar on transformation groups. In: Bredon, G., Floyd, E.E., Montgomery, D., Palais, R. (eds.) Annals of Mathematics Studies, vol. 46. Princeton University Press, Princeton (1960)Google Scholar
  13. 13.
    Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Springer, Berlin (1982)CrossRefMATHGoogle Scholar
  14. 14.
    Carpentier, D., Delplace, P., Fruchart, M., Gawȩdzki, K.: Topological index for periodically driven time-reversal invariant 2D systems. Phys. Rev. Lett. 114, 106806 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Carpentier, D., Delplace, P., Fruchart, M., Gawȩdzki, K., Tauber, C.: Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals. Nucl. Phys. B 896, 779–834 (2015)ADSCrossRefMATHGoogle Scholar
  16. 16.
    Chruściński, D., Jamiołkowski, A.: Geometric Phases in Classical and Quantum Mechanics. Birkhäuser, Basel (2004)MATHGoogle Scholar
  17. 17.
    Carey, A., Phillips, J., Schulz-Baldes, H.: Spectral flow for real skew-adjoint Fredholm operators. J. Spec. Theory (2016) (to appear)Google Scholar
  18. 18.
    De Nittis, G., Gomi, K.: Classification of “Real” Bloch-bundles: topological quantum systems of type AI. J. Geom. Phys. 86, 303–338 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    De Nittis, G., Gomi, K.: Classification of “Quaternionic” Bloch-bundles: topological insulators of type AII. Commun. Math. Phys. 339, 1–55 (2015)ADSCrossRefMATHGoogle Scholar
  20. 20.
    De Nittis, G., Gomi, K.: Differential geometric invariants for time-reversal symmetric Bloch-bundles: the “Real” case. J. Math. Phys. 57, 053506 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    De Nittis, G., Gomi, K.: Chiral vector bundles: a geometric model for class AIII topological quantum systems. (2015). E-print arXiv:1504.04863
  22. 22.
    De Nittis, G., Gomi, K.: The cohomological nature of the Fu-Kane-Mele invariant. J. Geom. Phys. 124, 124–164 (2018)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Dirac, P.A.M.: Quantized singularities in the electromagnetic field. Proc. R. Soc. Lond. A. 133, 60–72 (1931)ADSCrossRefMATHGoogle Scholar
  24. 24.
    Davis, J.F., Kirk, P.: Lecture Notes in Algebraic Topology. AMS, Providence (2001)CrossRefMATHGoogle Scholar
  25. 25.
    De Nittis, G., Lein, M.: Topological polarization in graphene-like systems. J. Phys. A 46, 385001 (2013)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    De Nittis, G., Schulz-Baldes, H.: Spectral flows of dilations of Fredholm operators. Can. Math. Bull. 58, 51–68 (2015)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Dos Santos, P.F., Lima-Filho, P.: Quaternionic algebraic cycles and reality. Trans. Am. Math. Soc. 356, 4701–4736 (2004)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Dupont, J.L.: Symplectic bundles and \(KR\)-theory. Math. Scand. 24, 27–30 (1969)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Edelson, A.L.: Real vector bundles and spaces with free involutions. Trans. Am. Math. Soc. 157, 179–188 (1971)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Fu, L., Kane, C.L., Mele, E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Freed, D.S., Moore, G.W.: Twisted equivariant matter. Ann. Henri Poincaré 14, 1927–2023 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Furuta, M., Kametani, Y., Matsue, H., Minami, N.: Stable-homotopy Seiberg–Witten invariants and Pin bordisms. UTMS Preprint Series 2000, UTMS 2000-46 (2000)Google Scholar
  33. 33.
    Fiorenza, D., Monaco, D., Panati, G.: \(\mathbb{Z}_2\) invariants of topological insulators as geometric obstructions. Commun. Math. Phys. 343, 1115–1157 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Gomi, K.: A variant of K-theory and topological T-duality for real circle bundles. Commun. Math. Phys. 334, 923–975 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Graf, G.M., Porta, M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324, 851–895 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Gat, O., Robbins, J.M.: Topology of time-invariant energy bands with adiabatic structure. J. Phys. A Math. Theor. 50, 375203 (2017)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Grossmann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topological insulators. Commun. Math. Phys. 343, 477–513 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  40. 40.
    Hsiang, W.Y.: Cohomology Theory of Topological Transformation Groups. Springer, Berlin (1975)CrossRefMATHGoogle Scholar
  41. 41.
    Hausmann, J.-C., Holm, T., Puppe, V.: Conjugation spaces. Algebr. Geom. Topol. 5, 923964 (2005)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Husemoller, D.: Fibre Bundles. Springer, New York (1994)CrossRefMATHGoogle Scholar
  43. 43.
    Kahn, B.: Construction de classes de Chern équivariantes pour un fibré vectoriel Réel. Commun. Algebra 15, 695–711 (1987)MATHGoogle Scholar
  44. 44.
    Kellendonk, J.: On the \(C^*\)-algebraic approach to topological phases for insulators. Ann. Henri Poincaré 18, 2251–2300 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Kennedy, R., Guggenheim, C.: \(\mathbb{Z}_2\) topological order and the quantum spin Hall effect. Phys. Rev. B 91, 245148 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Kane, C.L., Mele, E.J.: \(\mathbb{Z}_2\) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009)ADSCrossRefMATHGoogle Scholar
  48. 48.
    Kono, A., Tamaki, D.: Generalized Cohomology. AMS, Providence (2002)MATHGoogle Scholar
  49. 49.
    Kubota, Y.: Controlled topological phases and bulk-edge correspondence. Commun. Math. Phys. 349, 493–525 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Kuchment, P.: Floquet Theory for Partial Differential Equations. Birkhäuser, Boston (1993)CrossRefMATHGoogle Scholar
  51. 51.
    Kennedy, R., Zirnbauer, M.R.: \(\mathbb{Z}_2\) topological order and the quantum spin Hall effect. Commun. Math. Phys. 342, 909–963 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    Lawson Jr., H.B., Lima-Filho, P., Michelsohn, M.-L.: Algebraic cycles and the classical groups. Part II: quaternionic cycles. Geom. Topol. 9, 1187–1220 (2005)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Matumoto, T.: On \(G\)-CW complexes and a theorem of J. H. C. Whitehead. J. Fac. Sci. Univ. Tokyo 18, 363–374 (1971)MathSciNetMATHGoogle Scholar
  54. 54.
    May, J.P.: Equivariant Homotopy and Cohomology Theory. CBMS Regional Conference Series in Mathematics, vol. 91. American Mathematical Society, Providence (1996)MATHGoogle Scholar
  55. 55.
    Monaco, D,; Cornean, H.; Teufel, S.: Wannier functions and \(\mathbb{Z}_2\) invariants in time-reversal symmetric topological insulators. Rev. Math. Phys. 29, 1730001 (2016).Google Scholar
  56. 56.
    Milnor, J., Stasheff, J.D.: Characteristic Classes. Princeton University Press, Princeton (1974)MATHGoogle Scholar
  57. 57.
    Pancharatnam, S.: Generalized theory of interference, and its applications. Part I. Coherent pencils. Proc. Indian Acad. Sci. A 44, 247–262 (1956)MathSciNetGoogle Scholar
  58. 58.
    Peterson, F.P.: Some remarks on Chern classes. Ann. Math. 69, 414–420 (1959)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Prodan, E., Schulz-Baldes, H.: Generalized Connes–Chern characters in \(KK\)-theory with an application to weak invariants of topological insulators. Rev. Math. Phys. 28, 1650024 (2016)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Serre, J.-P.: Faisceaux algebriques coherents. Ann. Math. 61, 197–278 (1955)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Swan, R.-G.: Vector bundles and projective modules. Trans. Am. Math. Soc. 105, 264–277 (1962)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Thiang, G.C.: On the \(K\)-theoretic classification of topological phases of matter. Ann. Henri Poincaré 17, 757–794 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Thouless, D.J., Kohmoto, M., Nightingale, M.P., den Nijs, M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982)ADSCrossRefGoogle Scholar
  64. 64.
    Thiang, G.C., Sato, K., Gomi, K.: Fu–Kane–Mele monopoles in semimetals. Nucl. Phys. B 923, 107–125 (2017)ADSCrossRefMATHGoogle Scholar
  65. 65.
    Yang, C.N.: Magnetic monopoles, fiber bundles, and gauge fields. In: Newman, H.B., Ypsilantis, T. (eds.) History of Original Ideas and Basic Discoveries in Particle Physics. NATO ASI Series (Series B: Physics), vol. 352, pp. 55–65. Springer, Boston MA (1996)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Facultad de Matemáticas and Instituto de FísicaPontificia Universidad CatólicaSantiagoChile
  2. 2.Department of Mathematical SciencesShinshu UniversityNaganoJapan

Personalised recommendations