Letters in Mathematical Physics

, Volume 108, Issue 4, pp 1007–1029 | Cite as

The Laughlin liquid in an external potential

Article
  • 31 Downloads

Abstract

We study natural perturbations of the Laughlin state arising from the effects of trapping and disorder. These are N-particle wave functions that have the form of a product of Laughlin states and analytic functions of the N variables. We derive an upper bound to the ground state energy in a confining external potential, matching exactly a recently derived lower bound in the large N limit. Irrespective of the shape of the confining potential, this sharp upper bound can be achieved through a modification of the Laughlin function by suitably arranged quasi-holes.

Keywords

Fractional quantum hall effect Laughlin states Quasi-holes 

Mathematics Subject Classification

81V70 

Notes

Acknowledgements

We thank Elliott H. Lieb for helpful remarks. N. Rougerie received financial support from the French ANR Project ANR-13-JS01-0005-01.

References

  1. 1.
    Arovas, S., Schrieffer, J., Wilczek, F.: Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    Chafaï, D., Gozlan, N., Zitt, P.-A.: First order asymptotics for confined particles with singular pair repulsions. Ann. Appl. Probab. 24, 2371–2413 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ciftjá, O.: Monte Carlo study of Bose Laughlin wave function for filling factors \(1/2\), \(1/4\) and \(1/6\). Europhys. Lett. 74, 486–492 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Frank, R.L., Lieb, E.H.: A liquid–solid phase transition in a simple model for swarming. Indiana Univ. J. Math. arXiv:1607.07971 (2017) (to appear)
  5. 5.
    Girvin, S.: Introduction to the fractional quantum Hall effect. Séminaire Poincaré 2, 54–74 (2004)Google Scholar
  6. 6.
    Haldane, F.D.M.: Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51, 605–608 (1983)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Jain, J.K.: Composite Fermions. Cambridge University Press, Cambridge (2007)CrossRefMATHGoogle Scholar
  8. 8.
    Laughlin, R.B.: Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)ADSCrossRefGoogle Scholar
  9. 9.
    Laughlin, R.B.: Elementary Theory: the Incompressible Quantum Fluid. In: Prange, R.E., Girvin, S.E. (eds.) The Quantum Hall Effect. Springer, Heidelberg (1987)Google Scholar
  10. 10.
    Laughlin, R.B.: Nobel lecture: fractional quantization. Rev. Mod. Phys. 71, 863–874 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lieb, E.H., Lebowitz, J.L.: The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei. Adv. Math. 9, 316–398 (1972)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)Google Scholar
  13. 13.
    Lieb, E.H., Rougerie, N., Yngvason, J.: Rigidity of the Laughlin liquid. arXiv:1609.03818 (2016)
  14. 14.
    Lieb, E.H., Rougerie, N., Yngvason, J.: Local incompressibility estimates for the Laughlin phase. arXiv:1701.09064 (2017)
  15. 15.
    Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2010)MATHGoogle Scholar
  16. 16.
    Lieb, E.H., Simon, B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lundholm, D., Rougerie, N.: Emergence of fractional statistics for tracer particles in a Laughlin liquid. Phys. Rev. Lett. 116, 170401 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Papenbrock, T., Bertsch, G.F.: Rotational spectra of weakly interacting Bose–Einstein condensates. Phys. Rev. A 63, 023616 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Rougerie, N., Serfaty, S., Yngvason, J.: Quantum Hall states of bosons in rotating anharmonic traps. Phys. Rev. A 87, 023618 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Rougerie, N., Serfaty, S., Yngvason, J.: Quantum Hall phases and plasma analogy in rotating trapped Bose gases. J. Stat. Phys. 154, 2–50 (2014)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Rougerie, N., Yngvason, J.: Incompressibility estimates for the Laughlin phase. Commun. Math. Phys. 336, 1109–1140 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Rougerie, N., Yngvason, J.: Incompressibility estimates for the Laughlin phase, part II. Commun. Math. Phys. 339, 263–277 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Störmer, H., Tsui, D., Gossard, A.: The fractional quantum Hall effect. Rev. Mod. Phys. 71, S298–S305 (1999)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Trugman, S., Kivelson, S.: Exact results for the fractional quantum Hall effect with general interactions. Phys. Rev. B 31, 5280 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Université Grenoble Alpes and CNRSLPMMC (UMR 5493)GrenobleFrance
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations