Abstract
For neutral and positively charged atoms and molecules, we prove the existence of infinitely many Hartree–Fock critical points below the first energy threshold (that is, the lowest energy of the same system with one electron removed). This is the equivalent, in Hartree–Fock theory, of the famous Zhislin–Sigalov theorem which states the existence of infinitely many eigenvalues below the bottom of the essential spectrum of the N-particle linear Schrödinger operator. Our result improves a theorem of Lions in 1987 who already constructed infinitely many Hartree–Fock critical points, but with much higher energy. Our main contribution is the proof that the Hartree–Fock functional satisfies the Palais–Smale property below the first energy threshold. We then use minimax methods in the N-particle space, instead of working in the one-particle space.
Similar content being viewed by others
Notes
The notation \(f\in L^{3/2}+L^\infty _\varepsilon \) means that for any \(\varepsilon >0\) we can write \(f=f_{3/2}+f_\infty \) with \(\Vert f_\infty \Vert _{L^\infty }\leqslant \varepsilon \), see [45]. Such potentials are relative form-compact (hence infinitesimal form-bounded) perturbations of \(-\Delta \) by [44, Sec. X.2] and [45, Sec. XIII.4].
References
Ambrosetti, A., Rabinowitz, P.: Dual variation methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)
Anantharaman, A., Cancès, E.: Existence of minimizers for Kohn–Sham models in quantum chemistry. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 2425–2455 (2009)
Bach, V.: Error bound for the Hartree–Fock energy of atoms and molecules. Commun. Math. Phys. 147, 527–548 (1992)
Bach, V.: Accuracy of mean field approximations for atoms and molecules. Commun. Math. Phys. 155, 295–310 (1993)
Bach, V., Lieb, E.H., Loss, M., Solovej, J.P.: There are no unfilled shells in unrestricted Hartree–Fock theory. Phys. Rev. Lett. 72, 2981–2983 (1994)
Bach, V., Lieb, E.H., Solovej, J.P.: Generalized Hartree–Fock theory and the Hubbard model. J. Stat. Phys. 76, 3–89 (1994)
Bahri, A.: Une méthode perturbative en théorie de Morse, Chap. V. Thèse de Doctorat d’État, Univ. Pierre et Marie Curie (1981)
Bahri, A., Lions, P.-L.: Remarques sur la théorie variationnelle des points critiques et applications. C. R. Acad. Sci. Paris Sér. I Math. 301, 145–147 (1985)
Bahri, A., Lions, P.-L.: Morse index of some min–max critical points. I. Application to multiplicity results. Commun. Pure Appl. Math. 41, 1027–1037 (1988)
Barca, G.M.J., Gilbert, A.T.B., Gill, P.M.W.: Communication: Hartree–Fock description of excited states of H2. J. Chem. Phys. 141, 111104 (2014)
Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Ration. Mech. Anal. 82, 347–375 (1983)
Cancès, É., Galicher, H., Lewin, M.: Computing electronic structures: a new multiconfiguration approach for excited states. J. Comput. Phys. 212, 73–98 (2006)
Coffman, C.V.: Lyusternik–Schnirelman theory: complementary principles and the Morse index. Nonlinear Anal. 12, 507–529 (1988)
Esteban, M.J., Lewin, M., Séré, É.: Variational methods in relativistic quantum mechanics. Bull. Am. Math. Soc. (N.S.) 45, 535–593 (2008)
Esteban, M.J., Séré, É.: Stationary states of the nonlinear Dirac equation: a variational approach. Commun. Math. Phys. 171, 323–350 (1995)
Esteban, M.J., Séré, É.: Solutions of the Dirac–Fock equations for atoms and molecules. Commun. Math. Phys. 203, 499–530 (1999)
Fang, G.: Morse indices of critical manifolds generated by min–max methods with compact Lie group actions and applications. Commun. Pure Appl. Math. 48, 1343–1368 (1995)
Fang, G., Ghoussoub, N.: Second-order information on Palais–Smale sequences in the mountain pass theorem. Manuscr. Math. 75, 81–95 (1992)
Fang, G., Ghoussoub, N.: Morse-type information on Palais–Smale sequences obtained by min–max principles. Commun. Pure Appl. Math. 47, 1595–1653 (1994)
Fefferman, C.L., Seco, L.A.: Asymptotic neutrality of large ions. Commun. Math. Phys. 128, 109–130 (1990)
Friesecke, G.: The multiconfiguration equations for atoms and molecules: charge quantization and existence of solutions. Arch. Ration. Mech. Anal. 169, 35–71 (2003)
Ghoussoub, N.: Location, multiplicity and Morse indices of min–max critical points. J. Reine Angew. Math. 417, 27–76 (1991)
Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge Tracts in Mathematics, vol. 107. Cambridge University Press, Cambridge (1993)
Hofer, H.: A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem. J. Lond. Math. Soc. (2) 31, 566–570 (1985)
Hunziker, W.: On the spectra of Schrödinger multiparticle Hamiltonians. Helv. Phys. Acta 39, 451–462 (1966)
Lazer, A.C., Solimini, S.: Nontrivial solutions of operator equations and Morse indices of critical points of min–max type. Nonlinear Anal. 12, 761–775 (1988)
Lenzmann, E., Lewin, M.: Dynamical ionization bounds for atoms. Anal. PDE 6, 1183–1211 (2013)
Léon, J.: Excited states for Coulomb systems in the Hartree–Fock approximation. Commun. Math. Phys. 120, 261–268 (1988)
Lewin, M.: The multiconfiguration methods in quantum chemistry: Palais–Smale condition and existence of minimizers. C. R. Math. Acad. Sci. Paris 334, 299–304 (2002)
Lewin, M.: Solutions of the multiconfiguration equations in quantum chemistry. Arch. Ration. Mech. Anal. 171, 83–114 (2004)
Lewin, M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595 (2011)
Li, C., Lu, J., Yang, W.: Gentlest ascent dynamics for calculating first excited state and exploring energy landscape of Kohn–Sham density functionals. J. Chem. Phys. 143, 224110 (2015)
Lieb, E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29, 3018–3028 (1984)
Lieb, E.H., Sigal, I.M., Simon, B., Thirring, W.: Approximate neutrality of large-\(Z\) ions. Commun. Math. Phys. 116, 635–644 (1988)
Lieb, E.H., Simon, B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)
Lions, P.-L.: Sur l’existence d’états excités dans la théorie de Hartree–Fock. C. R. Acad. Sci. Paris Sér. I Math. 294, 377–379 (1982)
Lions, P.-L.: The concentration–compactness principle in the calculus of variations. The locally compact case, part I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–149 (1984)
Lions, P.-L.: The concentration–compactness principle in the calculus of variations. The locally compact case, part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)
Lions, P.-L.: Solutions of Hartree–Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97 (1987)
Lions, P.-L.: Hartree–Fock and related equations. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. IX (Paris, 1985–1986), vol. 181 of Pitman Res. Notes in Mathematics Series, pp. 304–333. Longman Sci. Tech., Harlow (1988)
Nam, P.T.: New bounds on the maximum ionization of atoms. Commun. Math. Phys. 312, 427–445 (2012)
Paturel, E.: Solutions of the Dirac–Fock equations without projector. Ann. Henri Poincaré 1, 1123–1157 (2000)
Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1986)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press, New York (1975)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV. Analysis of Operators. Academic Press, New York (1978)
Ruskai, M.B.: Absence of discrete spectrum in highly negative ions: II. Extension to fermions. Commun. Math. Phys. 85, 325–327 (1982)
Seco, L.A., Sigal, I.M., Solovej, J.P.: Bound on the ionization energy of large atoms. Commun. Math. Phys. 131, 307–315 (1990)
Sigal, I.M.: Geometric methods in the quantum many-body problem. Non existence of very negative ions. Commun. Math. Phys. 85, 309–324 (1982)
Sigal, I.M.: How many electrons can a nucleus bind? Ann. Phys. 157, 307–320 (1984)
Solimini, S.: Morse index estimates in min–max theorems. Manuscr. Math. 63, 421–453 (1989)
Solovej, J.P.: Proof of the ionization conjecture in a reduced Hartree–Fock model. Invent. Math. 104, 291–311 (1991)
Solovej, J.P.: The Size of Atoms in Hartree–Fock Theory, pp. 321–332. Birkhäuser, Boston (1996)
Solovej, J.P.: The ionization conjecture in Hartree–Fock theory. Ann. Math. (2) 158, 509–576 (2003)
Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4th edn. Springer, New York (2008)
Tanaka, K.: Morse indices at critical points related to the symmetric mountain pass theorem and applications. Commun. Partial Differ. Equ. 14, 99–128 (1989)
Tassi, M., Theophilou, I., Thanos, S.: Hartree–Fock calculation for excited states. Int. J. Quantum Chem. 113, 690–693 (2013)
Van Winter, C.: Theory of finite systems of particles. I. The green function. Mat.-Fys. Skr. Danske Vid. Selsk. 2(8), 60 (1964)
Viterbo, C.: Indice de Morse des points critiques obtenus par minimax. Ann. Inst. H. Poincaré Anal. Non Linéaire 5, 221–225 (1988)
Vugalter, S., Zhislin, G.M.: Finiteness of a discrete spectrum of many-particle Hamiltonians in symmetry spaces (coordinate and momentum representations). Teoret. Mat. Fiz. 32, 70–87 (1977)
Yafaev, D.: On the point spectrum in the quantum-mechanical many-body problem. Math. USSR Izv. 40, 861–896 (1976). English translation
Zhislin, G.M.: Discussion of the spectrum of Schrödinger operators for systems of many particles. Trudy Moskovskogo matematiceskogo obscestva 9, 81–120 (1960). (in Russian)
Zhislin, G.M., Sigalov, A.G.: The spectrum of the energy operator for atoms with fixed nuclei on subspaces corresponding to irreducible representations of the group of permutations. Izv. Akad. Nauk SSSR Ser. Mat. 29, 835–860 (1965)
Acknowledgements
I thank Éric Séré for useful comments. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement MDFT No. 725528).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lewin, M. Existence of Hartree–Fock excited states for atoms and molecules. Lett Math Phys 108, 985–1006 (2018). https://doi.org/10.1007/s11005-017-1019-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11005-017-1019-y