Skip to main content
Log in

A heat kernel proof of the index theorem for deformation quantization

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript
  • 2 Altmetric

Abstract

We give a heat kernel proof of the algebraic index theorem for deformation quantization with separation of variables on a pseudo-Kähler manifold. We use normalizations of the canonical trace density of a star product and of the characteristic classes involved in the index formula for which this formula contains no extra constant factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If \(\alpha = f(z,\bar{z})\hbox {d}z^1 \wedge \cdots \wedge \hbox {d}z^m \wedge \hbox {d} \bar{z}^1 \wedge \cdots \wedge \hbox {d}\bar{z}^m\) is a compactly supported volume form on U, denote by \(\hat{\alpha }= f(z,\bar{z}) \theta ^1 \ldots \theta ^m \bar{\theta }^1 \ldots \bar{\theta }^m\) the corresponding function on \(\Pi TU\). Then,

    $$\begin{aligned} \int _{\Pi TU} \hat{\alpha }\, \hbox {d}\beta = \int _U \alpha . \end{aligned}$$

References

  1. Alvarez-Gaumé, L.: Supersymmetry and the Atiah–Singer index theorem. Commun. Math. Phys. 90, 161–173 (1983)

    Article  ADS  MATH  Google Scholar 

  2. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Phys. 111(1), 61–110 (1978)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac operators. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  4. Bertelson, M., Cahen, M., Gutt, S.: Equivalence of star products. Class. Quan. Gravity 14, A93–A107 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bordemann, M., Waldmann, S.: A Fedosov star product of the Wick type for Kähler manifolds. Lett. Math. Phys. 41(3), 243–253 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Deligne, P.: Déformations de l’Algèbre des Fonctions d’une Variété Symplectique: comparaison entre Fedosov et De Wilde Lecomte. Selecta Math. (New series) 1, 667–697 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dolgushev, V.A., Rubtsov, V.N.: An algebraic index theorem for Poisson manifolds. J. Reine Angew. Math. 633, 77–113 (2009)

    MATH  MathSciNet  Google Scholar 

  8. Fedosov, B.: A simple geometrical construction of deformation quantization. J. Differ. Geom. 40(2), 213–238 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fedosov, B.: Deformation Quantization and Index Theory. Mathematical Topics, vol. 9. Akademie, Berlin (1996)

    MATH  Google Scholar 

  10. Feigin, B., Felder, G., Shoikhet, B.: Hochschild cohomology of the Weyl algebra and traces in deformation quantization. Duke Math. J. 127, 487–517 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feigin, B., Tsygan, B.: Riemann-Roch theorem and Lie algebra cohomology I. In: Proceedings of the Winter School on Geometry and Physics (Srn’i, 1988). Rend. Circ. Mat. Palermo (2) Suppl. 21, pp. 15–52 (1989)

  12. Getzler, E.: Pseudodifferential operators on supermanifolds and the Atiyah–Singer index theorem. Commun. Math. Phys. 92, 163–178 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Gutt, S., Rawnsley, J.: Equivalence of star products on a symplectic manifold. J. Geom. Phys. 29, 347–392 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Gutt, S., Rawnsley, J.: Natural star products on symplectic manifolds and quantum moment maps. Lett. Math. Phys. 66, 123–139 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Karabegov, A.: Deformation quantizations with separation of variables on a Kähler manifold. Commun. Math. Phys. 180(3), 745–755 (1996)

    Article  ADS  MATH  Google Scholar 

  16. Karabegov, A.V.: Cohomological classification of deformation quantizations with separation of variables. Lett. Math. Phys. 43, 347–357 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karabegov, A.V.: On the canonical normalization of a trace density of deformation quantization. Lett. Math. Phys. 45, 217–228 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Karabegov, A.: Formal symplectic groupoid of a deformation quantization. Commun. Math. Phys. 258, 223–256 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Karabegov, A.: A formal model of Berezin–Toeplitz quantization. Commun. Math. Phys. 274, 659–689 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Karabegov, A.: Deformation quantization with separation of variables on a super-Kähler manifold. J. Geom. Phys. 114, 197–215 (2017)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Nest, R., Tsygan, B.: Algebraic index theorem. Commun. Math. Phys. 172, 223–262 (1995)

    Article  ADS  MATH  Google Scholar 

  23. Nest, R., Tsygan, B.: Algebraic index theorem for families. Adv. Math. 113, 151–205 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pflaum, M.J., Posthuma, H.B., Tang, X.: An algebraic index theorem for orbifolds. Adv. Math. 210, 83–121 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pflaum, M.J., Posthuma, H.B., Tang, X.: Cyclic cocycles on deformation quantizations and higher index theorems. Adv. Math. 223, 1958–2021 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Karabegov.

Additional information

This paper is dedicated to my teacher Alexandre Aleksandrovich Kirillov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabegov, A. A heat kernel proof of the index theorem for deformation quantization. Lett Math Phys 107, 2093–2145 (2017). https://doi.org/10.1007/s11005-017-0980-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-0980-9

Keywords

Mathematics Subject Classification

Navigation