Letters in Mathematical Physics

, Volume 107, Issue 8, pp 1515–1543 | Cite as

The MV formalism for \({\mathrm{IBL}}_\infty \)- and \({\mathrm{BV}}_\infty \)-algebras

  • Martin Markl
  • Alexander A. Voronov


We develop a new formalism for the quantum master equation \(\Delta e^{S/\hbar } = 0\) and the category of \(\mathrm{IBL}_\infty \)-algebras and simplify some homotopical algebra arising in the context of oriented surfaces with boundary. We introduce and study a category of MV-algebras, which, on the one hand, contains such important categories as those of \(\mathrm{IBL}_\infty \)-algebras and \(\mathtt{L}_\infty \)-algebras and, on the other hand, is homotopically trivial, in particular allowing for a simple solution of the quantum master equation. We also present geometric interpretation of our results.


\(\mathrm{MV}\)-algebra \(\mathrm{IBL}_\infty \)-algebra Master equation Transfer 

Mathematics Subject Classification

08C05 18G55 (Primary) 16E45 58A50 (Secondary) 



The authors are indebted to D. Bashkirov and the anonymous referees for useful remarks, and to J. Latschev for sharing a preliminary version of his paper with K. Cieliebak and K. Fukaya. The first author also wishes to express his thanks to M. Doubek, B. Jurčo and I. Sachs for introducing him to the jungle of \(\mathrm{IBL}_\infty \)-algebras and acknowledge the hospitality of the University of Minnesota where he held the position of a Distinguished Ordway Visitor during the last stages of the work on this article. The second author gratefully acknowledges support from the Graduate School of Mathematical Sciences, the University of Tokyo, and the Simons Center for Geometry and Physics, Stony Brook University, at which some of the research for this paper was performed.


  1. 1.
    Bessis, D., Itzykson, C., Zuber, J.B.: Quantum field theory techniques in graphical enumeration. Adv. Appl. Math. 1(2), 109–157 (1980)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bashkirov, D., Voronov, A.A.: The BV formalism for \({{\rm L}}_\infty \)-algebras. J. Homotopy Relat. Struct. (2017). Preprint IHES/M/14/36. arXiv:1410.6432 [math.QA]
  3. 3.
    Braun, Ch., Lazarev, A.: Homotopy BV algebras in Poisson geometry. Trans. Moscow Math. Soc. 74, 217–227 (2013)Google Scholar
  4. 4.
    Campos, R., Merkulov, S., Willwacher, T.: The Frobenius properad is Koszul. Duke Math. J. 165(15), 2921–2989 (2016)Google Scholar
  5. 5.
    Cieliebak, K., Fukaya, K., Latschev, J.: Homological algebra related to surfaces with boundaries. Preprint arXiv:1508.02741 [math.QA] (2015)
  6. 6.
    Cieliebak, K., Latschev, J.: The role of string topology in symplectic field theory. New Perspectives and Challenges in Symplectic Field Theory, Volume 49 of CRM Proceedings of Lecture Notes, pp. 113–146. American Mathematical Society, Providence (2009)Google Scholar
  7. 7.
    Drummond-Cole, G.C., Terilla, J., Tradler, T.: Algebras over \(\Omega (\text{ co } {Frob})\). J. Homotopy Relat. Struct. 5(1), 15–36 (2010)MathSciNetMATHGoogle Scholar
  8. 8.
    Iacono, D.: Deformations and obstructions of pairs (X,D). Preprint arXiv:1302.1149 [math.AG] (2013)
  9. 9.
    Kassel, Ch.: Quantum groups. Graduate Texts in Mathematics, vol. 155. Springer, New York (1995)Google Scholar
  10. 10.
    Katzarkov, L., Kontsevich, M., Pantev, T.: Hodge theoretic aspects of mirror symmetry. In: From Hodge Theory to Integrability and TQFT tt*-Geometry, Volume 78 of Proceedings of the Symposium in Pure Mathematics, pp 87–174. Americal Mathematics Society, Providence (2008)Google Scholar
  11. 11.
    Kravchenko, O.: Deformations of Batalin–Vilkovisky algebras. In; Poisson Geometry (Warsaw, 1998), Volume 51 of Banach Center Publ., pp. 131–139. Polish Acad. Sci., Warsaw (2000)Google Scholar
  12. 12.
    Lada, T., Markl, M.: Strongly homotopy Lie algebras. Comm. Algebra 23(6), 2147–2161 (1995)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Losev, A.: From Berezin integral to Batalin-Vilkovisky formalism: a mathematical physicist’s point of view. In: Shifman, M. (ed.) Felix Berezin. Life and Death of the Mastermind of Supermathematics, pp. 3–30. World Scientific Publishing Co. Pte. Ltd., Hackensack (2007)Google Scholar
  14. 14.
    Markl, M.: Deformation Theory of Algebras and Their Diagrams, Volume 116 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington (2012)Google Scholar
  15. 15.
    Markl, M.: On the origin of higher braces and higher-order derivations. J. Homotopy Relat. Struct. 10(3):637–667 (2015)Google Scholar
  16. 16.
    Markl, M., Remm, E.: Algebras with one operation including Poisson and other Lie-admissible algebras. J. Algebra 299, 171–189 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Münster, K., Sachs, I.: Quantum open-closed homotopy algebra and string field theory. Comm. Math. Phys. 321(3), 769–801 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Markl, M., Shnider, S., Stasheff, J.D.: Operads in Algebra, Topology and Physics, volume 96 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2002)Google Scholar
  19. 19.
    Terilla, J.: Quantizing deformation theory. In: Deformation Spaces, Volume E40 of Aspects Math., pp. 135–141. Vieweg + Teubner, Wiesbaden (2010)Google Scholar
  20. 20.
    Terilla, J.: Smoothness theorem for differential BV algebras. J. Topol. 1(3), 693–702 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Mathematical Institute of the AcademyPrague 1Czech Republic
  2. 2.Faculty of Mathematics and PhysicsCharles UniversityPrague 8Czech Republic
  3. 3.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  4. 4.Kavli IPMU (WPI), UTIASThe University of TokyoKashiwaJapan

Personalised recommendations