Letters in Mathematical Physics

, Volume 107, Issue 5, pp 933–961 | Cite as

A universal spinor bundle and the Einstein–Dirac–Maxwell equation as a variational theory

  • Olaf Müller
  • Nikolai Nowaczyk


Not only the Dirac operator, but also the spinor bundle of a pseudo-Riemannian manifold depends on the underlying metric. This leads to technical difficulties in the study of problems where many metrics are involved, for instance in variational theory. We construct a natural finite dimensional bundle, from which all the metric spinor bundles can be recovered including their extra structure. In the Lorentzian case, we also give some applications to Einstein–Dirac–Maxwell theory as a variational theory and show how to coherently define a maximal Cauchy development for this theory.


Spin geometry Spinor bundle Jet spaces Natural constructions Einstein–Dirac–Maxwell equation Cauchy development 

Mathematics Subject Classification

35L03 53C27 58J45 83C22 



The authors would like to thank Bernd Ammann and Felix Finster for interesting discussions and suggestions.


  1. 1.
    Ammann, B., Weiss, H., Witt, F.: A spinorial energy functional: critical points and gradient flow. (2012). arXiv:1207.3529
  2. 2.
    Ammann, B., Weiss, H., Witt, F.: The spinorial energy functional on surfaces. (2014). arXiv:1407.2590
  3. 3.
    Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geometry. Mathematische Zeitschrift 249(3), 545–580 (2005). arXiv:0303095
  4. 4.
    Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten, vol. 41. Teubner-Texte zur Mathematik [Teubner Texts in Mathematics]. With English, French and Russian summaries. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, p. 180 (1981)Google Scholar
  5. 5.
    Baum, H.: Eichfeldtheorie. Springer, Berlin Heidelberg (2009)Google Scholar
  6. 6.
    Baum, H., Müller, O.: Codazzi spinors and globally hyperbolic manifolds with special holonomy. (2008). doi: 10.1007/s00209-007-0169-5
  7. 7.
    Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Comm. Math. Phys. 257(1), 43–50 (2005). ISSN:0010-3616. doi: 10.1007/s00220-005-1346-1
  8. 8.
    Bourguignon, J.-P., Gauduchon, P.: Spineurs, Opérateurs de Dirac et Variations de Métriques. Commun. Math. Phys. 144(3), 581–599 (1992). doi: 10.1007/BF02099184
  9. 9.
    Choquet-Bruhat, Y.: General relativity and the Einstein equations. Oxford Mathematical Monographs. Oxford University Press, Oxford, pp. xxvi+785 (2009). ISBN:978-0-19-923072-3Google Scholar
  10. 10.
    Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Comm. Math. Phys. 14, 329–335 (1969). ISSN:0010-3616Google Scholar
  11. 11.
    Finster, F.: Local U(2, 2) symmetry in relativistic quantum mechanics. J. Math. Phys. 39(12), 6276–6290 (1998). ISSN:0022-2488. doi: 10.1063/1.532638
  12. 12.
    Friedrich, H., Rendall, A.D.: The Cauchy problem for the Einstein equations. Lect. Notes Phys. 540, 127–224 (2000). arXiv:gr-qc/0002074 [gr-qc]
  13. 13.
    Ginoux, N., Müller, O: Massless Dirac-Maxwell systems in asymptotically flat spacetimes. (2014). arXiv:1407.1177
  14. 14.
    Kim, E.C., Friedrich, T.: The Einstein-Dirac equation on Riemannian spin manifolds. J. Geom. Phys. 33(1–2), 128–172 (2000). ISSN:393-0440. doi: 10.1016/S0393-0440(99)00043-1
  15. 15.
    Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton University Press (1989)Google Scholar
  16. 16.
    Lindblad, H., Rodnianski, I.: The global stability of Minkowski space-time in harmonic gauge. Ann. Math. (2) 171(3), 1401–1477 (2010). ISSN:0003-486X. doi: 10.4007/annals.2010.171.1401
  17. 17.
    Loizelet, J.: Solutions globales des équations d’Einstein-Maxwell avec jauge harmonique et jauge de Lorentz. C. R. Math. Acad. Sci. Paris 342(7), 479–482 (2006). ISSN:1631-073X. doi: 10.1016/j.crma.2006.01.018
  18. 18.
    Maier, S.: Generic metrics and connections on spin- and spinc-manifolds. Commun. Math. Phys. 188, 407–437 (1997)Google Scholar
  19. 19.
    Müller, O., Sánchez, M.: Lorentzian manifolds isometrically embeddable in \(\mathbb{L}^N\). Trans. Am. Math. Soc. 363(10), 5367–5379 (2011). ISSN:0002-9947. doi: 10.1090/S0002-9947-2011-05299-2
  20. 20.
    Müller, O.: Special temporal functions on globally hyperbolic manifolds. In: Lett. Math. Phys. 103(3), 285–297 (2013). ISSN:0377-9017. doi: 10.1007/s11005-012-0591-4
  21. 21.
    Müller, O.: A note on invariant temporal functions. (2015). arXiv:1502.02716
  22. 22.
    Nowaczyk, N.: Dirac eigenvalues of higher multiplicity. PhD thesis. Jan. 14, 2015.
  23. 23.
    Pérez, R.F., Masqué, J.M.: Natural connections on the bundle of Riemannian metrics. Monatsh. Math. 155(1), 67–78 (2008). ISSN:0026-9255. doi: 10.1007/s00605-008-0565-x
  24. 24.
    Roe, J.: Elliptic operators, topology and asymptotic methods. Second. vol. 395. Pitman Research Notes in Mathematics Series. Harlow: Longman, pp. ii+209 (1998). ISBN:0-582-32502-1Google Scholar
  25. 25.
    Saunders, D.J.: The geometry of jet bundles. vol. 142. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, pp. viii+293 (1989). ISBN:0-521-36948-7. doi: 10.1017/CBO9780511526411
  26. 26.
    Sbierski, J.: On the existence of a maximal Cauchy development for the Einstein equations—a dezornification. (2013). arXiv:1309.7591
  27. 27.
    Taylor, M.E.: Partial differential equations III. Nonlinear equations. Second. vol. 117. Applied Mathematical Sciences. Springer, New York, pp. xxii+715 (2011). ISBN:978-1-4419-7048-0. doi: 10.1007/978-1-4419-7049-7
  28. 28.
    Wong, W.W.-Y.: A comment on the construction of the maximal globally hyperbolic Cauchy development. J. Math. Phys. 54(11), 113511, 8 (2013). ISSN:0022-2488. doi: 10.1063/1.4833375

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität RegensburgRegensburgGermany
  2. 2.Maths DepartmentImperial CollegeLondonUnited Kingdom

Personalised recommendations