Skip to main content

Nonexistence of Large Nuclei in the Liquid Drop Model

Abstract

We give a simplified proof of the nonexistence of large nuclei in the liquid drop model and provide an explicit bound. Our bound is within a factor of 2.3 of the conjectured value and seems to be the first quantitative result.

References

  1. Alberti G., Choksi R., Otto F.: Uniform energy distribution for an isoperimetric problem with long-range interactions. J. Am. Math. Soc. 22, 596–605 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Bohr N.: Neutron capture and nuclear constitution. Nature 137, 344–348 (1936)

    ADS  Article  MATH  Google Scholar 

  3. Bonacini M., Cristoferi R.: Local and global minimality results for a nonlocal isoperimetric problem on \({{\mathbb{R}^{N}}}\). SIAM J. Math. Anal. 46(4), 2310–2349 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  4. Cicalese M., Spadaro E.: Droplet minimizers of an isoperimetric problem with long-range interactions. Commun. Pure Appl. Math. 66, 1298–1333 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  5. Choksi R., Peletier M.A.: Small volume fraction limit of the diblock copolymer problem: I. Sharp-interface functional. SIAM J. Math. Anal. 42, 1334–1370 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  6. Choksi R., Peletier M.A.: Small volume-fraction limit of the diblock copolymer problem: II. Diffuse-interface functional. SIAM J. Math. Anal. 43(2), 739–763 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  7. De Giorgi, E.: Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita. Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I(8), 33–44 (1958)

  8. Frank, R.L., Lieb, E.H.: A compactness lemma and its application to the existence of minimizers for the liquid drop model. SIAM J. Math. Anal. 47(6), 4436–4450 (2015)

  9. Gamow G.: Mass defect curve and nuclear constitution. Proc. R. Soc. Lond. Ser. A 126, 632–644 (1930)

    ADS  Article  MATH  Google Scholar 

  10. Knüpfer H., Muratov C.: On an isoperimetric problem with a competing nonlocal term II: the general case. Commun. Pure Appl. Math. 67(12), 1974–1994 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  11. Knüpfer, H., Muratov, C., Novaga, M.: Low density phases in a uniformly charged liquid (2015). arXiv:1504.05600 (preprint)

  12. Lu J., Otto F.: Nonexistence of minimizers for Thomas–Fermi–Dirac–von Weizsäcker model. Commun. Pure Appl. Math. 67(10), 1605–1617 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  13. Maggi, F.: Sets of finite perimeter and geometric variational problems. In: An Introduction to Geometric Measure Theory. Cambridge Studies in Advanced Mathematics, vol. 135. Cambridge University Press, Cambridge (2012)

  14. Nam, P.T., Van Den Bosch, H.: Nonexistence in Thomas–Fermi–Dirac–von Weizsäcker theory with small nuclear charges (2016). arXiv:1603.07368 (preprint)

  15. Riesz F.: Sur une inégalité intégrale. J. Lond. Math. Soc. 5, 162–168 (1930)

    MathSciNet  Article  MATH  Google Scholar 

  16. von Weizsäcker C.F.: Zur Theorie der Kernmassen. Zeitschrift für Physik A 96, 431–458 (1935)

    ADS  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phan Thành Nam.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frank, R.L., Killip, R. & Nam, P.T. Nonexistence of Large Nuclei in the Liquid Drop Model. Lett Math Phys 106, 1033–1036 (2016). https://doi.org/10.1007/s11005-016-0860-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0860-8

Mathematics Subject Classification

  • 49Q10
  • 49Q20
  • 81V35

Keywords

  • liquid drop model
  • minimization problem
  • nonexistence