Skip to main content
Log in

The Feynman Identity for Planar Graphs

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Feynman identity (FI) of a planar graph relates the Euler polynomial of the graph to an infinite product over the equivalence classes of closed nonperiodic signed cycles in the graph. The main objectives of this paper are to compute the number of equivalence classes of nonperiodic cycles of given length and sign in a planar graph and to interpret the data encoded by the FI in the context of free Lie superalgebras. This solves in the case of planar graphs a problem first raised by Sherman and sets the FI as the denominator identity of a free Lie superalgebra generated from a graph. Other results are obtained. For instance, in connection with zeta functions of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrén D., Markström K.: A bivariate Ising polynomial of a graph. Discret. Appl. Math. 157, 2515–2524 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cimasoni, C.: A generalized Kac–Ward formula. J. Stat. Mech. 2010, P07023 (2010)

  3. da Costa G.A.T.F.: Feynman identity: a special case. J. Math. Phys. 38, 1014–1034 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. da Costa G.A.T.F., Maciel A.L.: Combinatorial formulation of Ising model revisited. Rev. Brasil. do Ensino de Física. 25, 49–61 (2003)

    Article  Google Scholar 

  5. da Costa G.A.T.F., Variane J.: Feynman identity: a special case revisited. Lett. Math. Phys. 73, 221–235 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. da Costa G.A.T.F., Zimmermann G.A.: An analog to the Witt identity. Pacif. J. Math. 263, 475–494 (2013)

    Article  MATH  Google Scholar 

  7. da Costa, G.A.T.F.: Graphs and generalized Witt identities (2014). arXiv:1409.5767v2 [math.CO]

  8. Garijo D., Goodall A., Nesetril J.: Distinguishing graphs by their left and right homomorphism profiles. Eur. J. Combin. 32, 1025–1053 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Helmuth T.: Ising model observables and non-backtracking walks. J. Math. Phys. 55, 1–28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Horton, M.D.: Ihara zeta functions of irregular graphs. Doctoral dissertation, University of California, CA, USA (2006)

  11. Kang S.-J., Kim M.-H.: Free Lie algebras, generalized Witt formula, and the denominator identity. J. Algebra. 183, 560–594 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kang S.-J.: Graded Lie superalgebras and the superdimension formula. J. Algebra. 204, 597–655 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kang S.-J., Kim M.-H.: Dimension formula for graded Lie algebras and its applications. Trans. Am. Math. Soc. 351, 4281–4336 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kang S.-J., Kwon J.-H.: Graded Lie superalgebras, supertrace formula and orbit Lie superalgebras. Proc. Lond. Math. Soc. 81, 675–724 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Landau, E.: Elementary number theory. AMS Chelsea Publishing, Providence RI (1966)

  16. Lin, M.-S.M.: Applications of combinatorial analysis to the calculation of the partition function of the Ising model, Doctoral Dissertation, California Institute of Technology, CA, USA (2009)

  17. Lis, M.: A short proof of the Kac–Ward formula. (2015). arXiv:1502.04322v1 [math.CO]

  18. Loebl, M.: A discrete non-pfaffian approach to the Ising problem. DIMACS 63. Am. Math. Soc., Providence, RI, 145–154 (2004)

  19. Markström, K.: The general graph homorphism polynomial:its relatioship with other graph polynomials and partition functions. (2014). arXiv:1401.6335v1 [math.CO]

  20. Onsager L.: Crystal statistics. I. A two dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Serre J.-P.: Lie algebras and Lie groups. Benjamin, New York (1965)

    MATH  Google Scholar 

  22. Sherman S.: Combinatorial aspects of the Ising model for ferromagnetism.I. A conjecture of Feynman on paths and graphs. J. Math. Phys. 1, 202–217 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  23. Sherman S.: Combinatorial aspects of the Ising model for ferromagnetism.II. An analogue to the Witt identity. Bull. Am. Math. Soc. 68, 225–229 (1962)

    Article  MathSciNet  Google Scholar 

  24. Stark H.M., Terras A.A.: Zeta Functions of finite graphs and coverings. Adv. Math. 121, 124–165 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. T. F. da Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, G.A.T.F. The Feynman Identity for Planar Graphs. Lett Math Phys 106, 1089–1107 (2016). https://doi.org/10.1007/s11005-016-0858-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0858-2

Mathematics Subject Classification

Keywords

Navigation