Ginzburg V.L., Landau L.D.: On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064 (1950)
Google Scholar
Bardeen J., Cooper L., Schrieffer J.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957)
ADS
MathSciNet
Article
MATH
Google Scholar
Gor’kov L.P.: Microscopic derivation of the Ginzburg–Landau equations in the theory of superconductivity. ZH. Eksp. Teor. Fiz. 36, 1918 (1959)
MATH
Google Scholar
Eilenberger G.: Ableitung verallgemeinerter Ginzburg–Landau-Gleichungen für reine Supraleiter aus einem Variationsprinzip. Z. Phys. 182, 427 (1965)
ADS
Article
MATH
Google Scholar
De Gennes, P.G.: Superconductivity of metals and alloys, Advanced Books Classics Series. Westview Press (1999)
Frank R.L., Hainzl C., Seiringer R., Solovej J.P.: Microscopic derivation of the Ginzburg–Landau theory. J. Am. Math. Soc. 25, 667 (2012)
MathSciNet
Article
MATH
Google Scholar
Frank R.L., Hainzl C., Seiringer R., Solovej J.P.: The external field dependence of the BCS critical temperature. Commun. Math. Phys. 342, 189 (2016)
ADS
MathSciNet
Article
MATH
Google Scholar
Stephen M.J., Suhl H.: Weak time dependence in pure superconductors. Phys. Rev. Lett. 13, 797 (1964)
ADS
Article
MATH
Google Scholar
Abrahams E., Tsuneto T.: Time variation of the Ginzburg–Landau order parameter. Phys. Rev. 152, 416 (1966)
ADS
Article
Google Scholar
Schmidt H.: The onset of superconductivity in the time dependent Ginzburg–Landau theory. Z. Phys. 216, 336 (1968)
ADS
Article
Google Scholar
Gor’kov L.P., Eliashberg G.M.: Generalization of Ginzburg–Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Sov. Phys. JETP. 27, 328 (1968)
ADS
Google Scholar
Cyrot M.: Ginzburg–Landau theory for superconductors. Rep. Prog. Phys. 36, 103 (1973)
ADS
Article
Google Scholar
Sá de Melo C.A.R., Randeria M., Engelbrecht J.R.: Crossover from BCS to Bose superconductivity: transition temperature and time-dependent Ginzburg–Landau theory. Phys. Rev. Lett. 71, 3202 (1993)
Randeria, M.: Crossover from BCS theory to Bose–Einstein condensation. In: Griffin, A., Snoke, D.W., Stringari, S., (eds.) Bose-Einstein condensation, Cambridge University Press, pp. 355–392 (1996)
Gor’kov L.P.: On the energy spectrum of superconductors. Sov. Phys. JETP. 34, 505 (1958)
MathSciNet
MATH
Google Scholar
Hainzl, C., Seyrich, J.: Comparing the full time-dependent BCS equation to its linear approximation: a numerical investigation. Eur. Phys. J. (To appear). arXiv:1504.05881
Hainzl C., Hamza E., Seiringer R., Solovej J.P.: The BCS functional for general pair interactions. Commun. Math. Phys. 281, 349 (2008)
ADS
MathSciNet
Article
MATH
Google Scholar
Frank R.L., Hainzl C., Naboko S., Seiringer R.: The critical temperature for the BCS equation at weak coupling. J. Geom. Anal. 17, 559 (2007)
MathSciNet
Article
MATH
Google Scholar
Hainzl C., Seiringer R.: Critical temperature and energy gap for the BCS equation. Phys. Rev. B. 77, 184517 (2008)
ADS
Article
Google Scholar
Frank, R.L., Lemm, M.: Multi-component Ginzburg–Landau theory: microscopic derivation and examples. Ann. H. Poincaré. arXiv:1504.07306
Zwerger, W. (ed.): The BCS-BEC crossover and the unitary Fermi gas, Lecture notes in physics, vol. 836. Springer (2012)
Leggett, A.J.: In: Pekalski, A., Przystawa, J. (eds.): Modern trends in the theory of condensed matter, Lecture notes in physics, vol. 115, pp. 13–27. Springer (1980)
Noziéres P., Schmitt-Rink S.: Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. Low Temp. Phys. 59, 195 (1985)
ADS
Article
Google Scholar
Drechsler M., Zwerger W.: Crossover from BCS-superconductivity to Bose-condensation. Ann. Phys. 504, 15 (1990)
Article
Google Scholar
Pieri P., Strinati G.C.: Derivation of the Gross-Pitaevskii equation for condensed bosons from the Bogoliubov–de-Gennes equations for superfluid fermions. Phys. Rev. Lett. 91, 030401 (2003)
ADS
Article
Google Scholar
Hainzl C., Seiringer R.: Low density limit of BCS theory and Bose-Einstein condensation of fermion pairs. Lett. Math. Phys. 100, 119 (2012)
ADS
MathSciNet
Article
MATH
Google Scholar
Hainzl C., Schlein B.: Dynamics of Bose–Einstein condensates of fermion pairs in the low density limit of BCS theory. J. Funct. Anal. 265, 399 (2013)
MathSciNet
Article
MATH
Google Scholar
Andreev A.F.: The thermal conductivity of the intermediate state in superconductors. Sov. Phys. JETP. 19, 1228 (1964)
Google Scholar
Kümmel R.: Dynamics of current flow through the phase-boundary between a normal and a superconducting region. Z. Phys. 218, 472 (1969)
ADS
Article
Google Scholar
Ambegaokar, V.: In: Parks, R.D. (ed.) Superconductivity. Dekker, New York (1969)
Hunziker W.: Resonances, metastable states and exponential decay laws in perturbation theory. Commun. Math. Phys. 132, 177 (1990)
ADS
MathSciNet
Article
MATH
Google Scholar