Abstract
We study the time-dependent Bogoliubov–de-Gennes equations for generic translation-invariant fermionic many-body systems. For initial states that are close to thermal equilibrium states at temperatures near the critical temperature, we show that the magnitude of the order parameter stays approximately constant in time and, in particular, does not follow a time-dependent Ginzburg–Landau equation, which is often employed as a phenomenological description and predicts a decay of the order parameter in time. The full non-linear structure of the equations is necessary to understand this behavior.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Ginzburg V.L., Landau L.D.: On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064 (1950)
Bardeen J., Cooper L., Schrieffer J.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957)
Gor’kov L.P.: Microscopic derivation of the Ginzburg–Landau equations in the theory of superconductivity. ZH. Eksp. Teor. Fiz. 36, 1918 (1959)
Eilenberger G.: Ableitung verallgemeinerter Ginzburg–Landau-Gleichungen für reine Supraleiter aus einem Variationsprinzip. Z. Phys. 182, 427 (1965)
De Gennes, P.G.: Superconductivity of metals and alloys, Advanced Books Classics Series. Westview Press (1999)
Frank R.L., Hainzl C., Seiringer R., Solovej J.P.: Microscopic derivation of the Ginzburg–Landau theory. J. Am. Math. Soc. 25, 667 (2012)
Frank R.L., Hainzl C., Seiringer R., Solovej J.P.: The external field dependence of the BCS critical temperature. Commun. Math. Phys. 342, 189 (2016)
Stephen M.J., Suhl H.: Weak time dependence in pure superconductors. Phys. Rev. Lett. 13, 797 (1964)
Abrahams E., Tsuneto T.: Time variation of the Ginzburg–Landau order parameter. Phys. Rev. 152, 416 (1966)
Schmidt H.: The onset of superconductivity in the time dependent Ginzburg–Landau theory. Z. Phys. 216, 336 (1968)
Gor’kov L.P., Eliashberg G.M.: Generalization of Ginzburg–Landau equations for non-stationary problems in the case of alloys with paramagnetic impurities. Sov. Phys. JETP. 27, 328 (1968)
Cyrot M.: Ginzburg–Landau theory for superconductors. Rep. Prog. Phys. 36, 103 (1973)
Sá de Melo C.A.R., Randeria M., Engelbrecht J.R.: Crossover from BCS to Bose superconductivity: transition temperature and time-dependent Ginzburg–Landau theory. Phys. Rev. Lett. 71, 3202 (1993)
Randeria, M.: Crossover from BCS theory to Bose–Einstein condensation. In: Griffin, A., Snoke, D.W., Stringari, S., (eds.) Bose-Einstein condensation, Cambridge University Press, pp. 355–392 (1996)
Gor’kov L.P.: On the energy spectrum of superconductors. Sov. Phys. JETP. 34, 505 (1958)
Hainzl, C., Seyrich, J.: Comparing the full time-dependent BCS equation to its linear approximation: a numerical investigation. Eur. Phys. J. (To appear). arXiv:1504.05881
Hainzl C., Hamza E., Seiringer R., Solovej J.P.: The BCS functional for general pair interactions. Commun. Math. Phys. 281, 349 (2008)
Frank R.L., Hainzl C., Naboko S., Seiringer R.: The critical temperature for the BCS equation at weak coupling. J. Geom. Anal. 17, 559 (2007)
Hainzl C., Seiringer R.: Critical temperature and energy gap for the BCS equation. Phys. Rev. B. 77, 184517 (2008)
Frank, R.L., Lemm, M.: Multi-component Ginzburg–Landau theory: microscopic derivation and examples. Ann. H. Poincaré. arXiv:1504.07306
Zwerger, W. (ed.): The BCS-BEC crossover and the unitary Fermi gas, Lecture notes in physics, vol. 836. Springer (2012)
Leggett, A.J.: In: Pekalski, A., Przystawa, J. (eds.): Modern trends in the theory of condensed matter, Lecture notes in physics, vol. 115, pp. 13–27. Springer (1980)
Noziéres P., Schmitt-Rink S.: Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. Low Temp. Phys. 59, 195 (1985)
Drechsler M., Zwerger W.: Crossover from BCS-superconductivity to Bose-condensation. Ann. Phys. 504, 15 (1990)
Pieri P., Strinati G.C.: Derivation of the Gross-Pitaevskii equation for condensed bosons from the Bogoliubov–de-Gennes equations for superfluid fermions. Phys. Rev. Lett. 91, 030401 (2003)
Hainzl C., Seiringer R.: Low density limit of BCS theory and Bose-Einstein condensation of fermion pairs. Lett. Math. Phys. 100, 119 (2012)
Hainzl C., Schlein B.: Dynamics of Bose–Einstein condensates of fermion pairs in the low density limit of BCS theory. J. Funct. Anal. 265, 399 (2013)
Andreev A.F.: The thermal conductivity of the intermediate state in superconductors. Sov. Phys. JETP. 19, 1228 (1964)
Kümmel R.: Dynamics of current flow through the phase-boundary between a normal and a superconducting region. Z. Phys. 218, 472 (1969)
Ambegaokar, V.: In: Parks, R.D. (ed.) Superconductivity. Dekker, New York (1969)
Hunziker W.: Resonances, metastable states and exponential decay laws in perturbation theory. Commun. Math. Phys. 132, 177 (1990)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Frank, R.L., Hainzl, C., Schlein, B. et al. Incompatibility of Time-Dependent Bogoliubov–de-Gennes and Ginzburg–Landau Equations. Lett Math Phys 106, 913–923 (2016). https://doi.org/10.1007/s11005-016-0847-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11005-016-0847-5