Abstract
We consider the simplest classical integrable model corresponding to a non-hyperelliptic spectral curve. We show that a certain complicated integral occurs when computing the average of observables in this model. This integral does not factorise. Since similar problems should also exist in the quantum case, we think that a serious question arises of how to deal with these integrals.
This is a preview of subscription content,
to check access.References
Mumford D.: Tata lectures on Theta, vol. II. Birkhäuser, Boston (1983)
Flaschka H., McLaughlin D.W.: Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodical boundary conditions. Progr. Theor. Phys. 55, 438–456 (1976)
Adams M.R., Harnad J., Hurtubise J.: Darboux coordinates and Liouville-Arnol’d integration in loop algebras. Commun. Math. Phys. 155, 385–413 (1993)
Diener, P., Dubrovin, B.A.: Algebraic-geometric Darboux coordinates ion R-matrix formalism, SISSA ISAS 88/94/FM (1994)
Nakayashiki A., Smirnov F.A.: Cohomologies of affine hyperelliptic Jacobi varieties and integrable systems. Commun. Math. Phys. 217, 623–652 (2001)
Nakayashiki, A.: On the cohomology of theta divisors of hyperelliptic Jacobians. In: Integrable systems, topology and physics, contemporary mathematics, vol. 309, pp. 177–185. AMS (2000)
Smirnov, F.A., Zeitlin, V.: Affine jacobians of spectral curves and integrable models. (2002). arXiv:math-ph/0203037
Nakayashiki A., Smirnov F.A.: Euler characteristics of theta divisors of Jacobians for spectral curves. CRM Proc. Lect. Notes 32, 177–187 (2012)
Suzuki M.: Transfer matrix method and Monte Carlo simulation in quantum spin systems. Phys. Rev. B. 31, 2957–2965 (1985)
Klümper A.: Free energy and correlation length of quantum chains related to restricted solid-on-solid lattice models. Annalen der Physik. 1, 540–553 (1992)
Boos H., Jimbo M., Miwa T., Smirnov F., Takeyama Y.: Hidden Grassmann structure in the XXZ model. Commun. Math. Phys. 272, 263–281 (2007)
Boos H., Jimbo M., Miwa T., Smirnov F., Takeyama Y.: Hidden Grassmann structure in the XXZ model II: Creation operators. Commun. Math. Phys. 286, 875–932 (2009)
Jimbo M., Miwa T., Smirnov F.: Hidden Grassmann structure in the XXZ model III: introducing Matsubara direction. J. Phys. A Math. Theor. 42, 304018 (2009)
Sklyanin E.: Quantum inverse scattering method. Selectedtopics. In: M.-L., Ge (ed.) Quantum groups and quantum integrable systems Nankai Lectures in Mathematical Physics, World Scientific, Singapore (1992)
Smirnov F.: Structure of matrix elements in quantum Toda chain. J. Phys. A. 31, 8953–8971 (1998)
Sklyanin E.: Separation of variables in the classical integrable SL(3) magnetic chain. Commun. Math. Phys. 150, 181–192 (1992)
Baker, H.F.: Abelian functions: Abel’s theorem and the allied theory of theta functions. Cambridge Mathematical Library (1996)
Author information
Authors and Affiliations
Corresponding author
Additional information
D. Martin: The work was conducted while this author was doing an internship at LPTHE. F. Smirnov: Membre du CNRS.
Rights and permissions
About this article
Cite this article
Martin, D., Smirnov, F. Problems with Using Separated Variables for Computing Expectation Values for Higher Ranks. Lett Math Phys 106, 469–484 (2016). https://doi.org/10.1007/s11005-016-0823-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11005-016-0823-0