Letters in Mathematical Physics

, Volume 105, Issue 10, pp 1413–1425 | Cite as

Perturbative Renormalisation for Not-Quite-Connected Bialgebras

  • Joachim KockEmail author


We observe that the Connes–Kreimer Hopf-algebraic approach to perturbative renormalisation works not just for Hopf algebras but more generally for filtered bialgebras B with the property that B 0 is spanned by group-like elements (e.g. pointed bialgebras with the coradical filtration). Such bialgebras occur naturally both in quantum field theory, where they have some attractive features, and elsewhere in combinatorics, where they cover a comprehensive class of incidence bialgebras. In particular, the setting allows us to interpret Möbius inversion as an instance of renormalisation.

Mathematics Subject Classification

Primary 81T15 Secondary 16T10 16T30 


perturbative renormalisation bialgebras 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergbauer, C., Kreimer, D.: Hopf algebras in renormalization theory: locality and Dyson-Schwinger equations from Hochschild cohomology. In: Physics and number theory, vol. 10 of IRMA Lect. Math. Theor. Phys., pp. 133–164. Eur. Math. Soc., Zürich (2006). arXiv:hep-th/0506190
  2. 2.
    Chin, W.: A brief introduction to coalgebra representation theory. In: Hopf algebras, vol. 237 of Lecture Notes in Pure and Appl. Math., pp. 109–131. Dekker, New York (2004)Google Scholar
  3. 3.
    Connes, A., Kreimer, D.: Hopf algebras, renormalization and noncommutative geometry. Commun. Math. Phys. 199, 203–242 (1998). arXiv:hep-th/9808042
  4. 4.
    Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210, 249–273 (2000). arXiv:hep-th/9912092
  5. 5.
    Connes, A., Marcolli, M.: Noncommutative geometry, quantum fields and motives, vol. 55 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, Hindustan Book Agency, New Delhi (2008)Google Scholar
  6. 6.
    Ebrahimi-Fard, K., Guo, L., Manchon, D.: Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion. Commun. Math. Phys. 267, 821–845 (2006). arXiv:math-ph/0602004
  7. 7.
    Ebrahimi-Fard, K., Kreimer, D.: The Hopf algebra approach to Feynman diagram calculations. J. Phys. A 38, R385–R407 (2005). arXiv:hep-th/0510202
  8. 8.
    Gálvez-Carrillo, I., Kock, J., Tonks, A.: Groupoids and Faà di Bruno formulae for Green functions in bialgebras of trees. Adv. Math. 254, 79–117 (2014). arXiv:1207.6404
  9. 9.
    Gálvez-Carrillo, I., Kock, J., Tonks, A.: Decomposition spaces, incidence algebras and Möbius inversion. (Preprint). arXiv:1404.3202
  10. 10.
    Kock, J.: Categorification of Hopf algebras of rooted trees. Cent. Eur. J. Math. 11, 401–422 (2013). arXiv:1109.5785
  11. 11.
    Kock, J.: Combinatorial Dyson-Schwinger equations and inductive data types. Talk at the Workshop on Dyson-Schwinger Equations in Modern Mathematics & Physics (ECT*, Trento, Sept. 2014) (2015, manuscript in preparation)Google Scholar
  12. 12.
    Kreimer, D.: On the Hopf algebra structure of perturbative quantum field theories. Adv. Theor. Math. Phys. 2, 303–334 (1998). arXiv:q-alg/9707029
  13. 13.
    Kreimer D.: Structures in Feynman graphs: Hopf algebras and symmetries. In: Graphs and patterns in mathematics and theoretical physics, vol. 73 of Proc. Sympos. Pure Math., pp. 43–78. Amer. Math. Soc., Providence (2005). arXiv:hep-th/0202110
  14. 14.
    Kreimer D.: Dyson-Schwinger equations: from Hopf algebras to number theory. In: Universality and renormalization, vol. 50 of Fields Inst. Commun., pp. 225–248. Amer. Math. Soc., Providence (2007). arXiv:hep-th/0609004
  15. 15.
    Lawvere F.W., Menni M.: The Hopf algebra of Möbius intervals. Theory Appl. Categ. 24, 221–265 (2010)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Manchon, D.: Hopf algebras, from basics to applications to renormalization. Comptes-rendus des Rencontres mathématiques de Glanon 2001 (parus en 2003) (2006). arXiv:math/0408405
  17. 17.
    Stanley, R.P.: Enumerative combinatorics, vol. 1. Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (1997, With a foreword by Gian-Carlo Rota. Corrected reprint of the 1986 original)Google Scholar
  18. 18.
    Sweedler M.E.: Hopf algebras. W.A. Benjamin Inc, New York (1969)Google Scholar
  19. 19.
    van Suijlekom, W.D.: The structure of renormalization Hopf algebras for gauge theories. I. Representing Feynman graphs on BV-algebras. Commun. Math. Phys. 290, 291–319 (2009). arXiv:0807.0999

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Departament de matemàtiquesUniversitat Autònoma de BarcelonaBellaterra (Barcelona)Spain

Personalised recommendations