Skip to main content
Log in

K3 Surfaces, Modular Forms, and Non-Geometric Heterotic Compactifications

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct non-geometric compactifications using the F-theory dual of the heterotic string compactified on a two-torus, together with a close connection between Siegel modular forms of genus two and the equations of certain K3 surfaces. The modular group mixes together the Kähler, complex structure, and Wilson line moduli of the torus yielding weakly coupled heterotic string compactifications which have no large radius interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldazabal G., Marques D., Nunez C.: Double field theory: a pedagogical review. Class. Q. Grav 30, 163001 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  2. Aspinwall P.S.: Some relationships between dualities in string theory. Nucl. Phys. Proc. Suppl. 46, 30–38 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  3. Aspinwall P.S.: Point-like instantons and the Spin(32)/\({\mathbb{Z}_2}\) heterotic string. Nucl. Phys. B 496, 149–176 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  4. Aspinwall P.S., Douglas M.R.: D-brane stability and monodromy. JHEP 05, 031 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  5. Aspinwall P.S., Gross M.: The SO(32) heterotic string on a K3 surface. Phys. Lett. B 387(4), 735–742 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  6. Aspinwall, P.S., Morrison, D.R.: String theory on K3 surfaces. In: Greene, B., Yau, S.T. (eds.) Mirror Symmetry II, pp. 703–716. International Press, Cambridge (1997)

  7. Aspinwall P.S., Morrison D.R.: Non-simply-connected gauge groups and rational points on elliptic curves. J. High Energy Phys. 07, 012 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  8. Baily Jr., W.L., Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math. 84(2), 442–528 (1966)

  9. Berman D.S., Thompson D.C.: Duality symmetric string and M-theory. Phys. Rep. 566, 1–60 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  10. Bershadsky M., Intriligator K., Kachru S., Morrison D.R., Sadov V., Vafa C.: Geometric singularities and enhanced gauge symmetries. Nucl. Phys. B 481, 215–252 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  11. Bolza O.: On binary sextics with linear transformations into themselves. Am. J. Math. 10(1), 47–70 (1887)

    Article  MathSciNet  Google Scholar 

  12. Borcea C.: Diffeomorphisms of a K3 surface. Math. Ann. 275(1), 1–4 (1986)

    Article  MathSciNet  Google Scholar 

  13. Braun A.P., Fucito F., Morales J.F.: U-folds as K3 fibrations. JHEP 1310, 154 (2013)

    ADS  Google Scholar 

  14. Cachazo, F.A., Vafa, C.: Type I′ and real algebraic geometry. arxivhep-th/0001029

  15. Clingher A., Doran C.F.: Modular invariants for lattice polarized K3 surfaces. Mich. Math. J. 55(2), 355–393 (2007)

    Article  MathSciNet  Google Scholar 

  16. Clingher A., Doran C.F.: Note on a geometric isogeny of K3 surfaces. Int. Math. Res. Not. IMRN 2011(16), 3657–3687 (2011)

    MathSciNet  Google Scholar 

  17. Clingher A., Doran C.F.: Lattice polarized K3 surfaces and Siegel modular forms. Adv. Math. 231(1), 172–212 (2012)

    Article  MathSciNet  Google Scholar 

  18. Curio G.: N = 2 string-string duality and holomorphic couplings. Fortsch. Phys. 46, 75–146 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  19. Deligne, P.: Courbes elliptiques: formulaire (d’après J. Tate). In: Modular functions of one variable, IV (Proceedings of Internattional Summer School, University of Antwerp, Antwerp, 1972), Lecture Notes in Mathematics, vol. 476, pp. 53–73. Springer, Berlin (1975)

  20. Dolgachev IV (1996) Mirror symmetry for lattice polarized K3 surfaces. J. Math. Sci 81(3):2599–2630

  21. Donaldson S.K.: Polynomial invariants for smooth four-manifolds. Topology 29(3), 257–315 (1990)

    Article  MathSciNet  Google Scholar 

  22. Douglas M.R.: D-branes, categories and N = 1 supersymmetry. J. Math. Phys. 42, 2818–2843 (2011)

    Article  ADS  Google Scholar 

  23. Douglas, M.R.: D-branes and \({\mathcal{N} = 1}\) supersymmetry. In: Strings, 2001 (Mumbai), Clay Mathematics Proceedings, vol. 1, pp. 139–152. American Mathematical Society, Providence (2002)

  24. Freitag, E.: Siegelsche Modulfunktionen, Grundlehren der Mathematischen Wissenschaften, vol. 254. Springer, Berlin (1983)

  25. Friedman R., Morgan J., Witten E.: Vector bundles and F theory. Commun. Math. Phys 187, 679–743 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  26. Gritsenko V.A., Hulek K., Sankaran G.K.: The Kodaira dimension of the moduli of K3 surfaces. Invent. Math. 169(3), 519–567 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  27. Gritsenko, V.A., Nikulin, V.V.: Igusa modular forms and “the simplest” Lorentzian Kac–Moody algebras. Mat. Sb. 187(11), 27–66 (1996); English translation in Sb. Math. 187(11), 1601–1641 (1996)

  28. Hellerman S., McGreevy J., Williams B.: Geometric constructions of nongeometric string theories. JHEP 01, 024 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  29. Hohm O., Lüst D., Zwiebach B.: The spacetime of double field theory: Review, remarks, and outlook. Fortsch. Phys. 61, 926–966 (2013)

    Article  ADS  Google Scholar 

  30. Hosono S., Lian B.H., Oguiso K., Yau S.T.: c = 2 rational toroidal conformal field theories via the Gauss product. Commun. Math. Phys. 241(2–3), 245–286 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  31. Igusa J.: On Siegel modular forms of genus two. Am. J. Math. 84, 175–200 (1962)

    Article  MathSciNet  Google Scholar 

  32. Igusa J.: Modular forms and projective invariants. Am. J. Math. 89, 817–855 (1967)

    Article  MathSciNet  Google Scholar 

  33. Igusa J.: On the ring of modular forms of degree two over Z. Am. J. Math. 101(1), 149–183 (1979)

    Article  MathSciNet  Google Scholar 

  34. Kodaira, K.: On compact analytic surfaces. II, III. Ann. of Math. (2) 77, 563–626 (1963); 78, 1–40 (1963)

  35. Kumar, A.: K3 surfaces associated with curves of genus two. Int. Math. Res. Not. 2008(6) (Art. ID rnm165), 26 (2008)

  36. Martucci L., Morales J.F., Pacifici D.R.: Branes, U-folds and hyperelliptic fibrations. JHEP 1301, 145 (2013)

    Article  ADS  Google Scholar 

  37. Matumoto, T.: On diffeomorphisms of a K3 surface. In: Algebraic and Topological Theories (Kinosaki, 1984), pp. 616–621. Kinokuniya, Tokyo (1986)

  38. McOrist J., Morrison D.R., Sethi S.: Geometries, non-geometries, and fluxes. Adv. Theor. Math. Phys. 14, 1515–1583 (2010)

    Article  MathSciNet  Google Scholar 

  39. Mestre, J.F.: Construction de courbes de genre 2 à partir de leurs modules. In: Effective Methods in Algebraic Geometry (Castiglioncello, 1990), Progress in Mathematics, vol. 94, pp. 313–334. Birkhäuser Boston (1991)

  40. Morrison D.R., Vafa C.: Compactifications of F-theory on Calabi–Yau threefolds, II. Nucl. Phys. B 476, 437–469 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  41. Nahm W., Wendland K.: A hiker’s guide to K3: Aspects of N = (4,4) superconformal field theory with central charge c = 6. Commun. Math. Phys. 216, 85–138 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  42. Namikawa Y., Ueno K.: The complete classification of fibres in pencils of curves of genus two. Manuscr. Math. 9, 143–186 (1973)

    Article  MathSciNet  Google Scholar 

  43. Narain K.S.: New heterotic string theories in uncompactified dimensions <10. Phys. Lett. B 169, 41–46 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  44. Narain K.S., Sarmadi M.H., Witten E.: A note on toroidal compactification of heterotic string theory. Nucl. Phys. B 279, 369–379 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  45. Néron A.: Modèles minimaux des variétés abéliennes sur les corps locaux et globaux Inst. Hautes Études Sci. Publ. Math. 21, 5–128 (1964)

    Article  Google Scholar 

  46. Nikulin, V.V.: Integral symmetric bilinear forms and some of their applications. Izv. Akad. Nauk SSSR Ser. Mat. 43(1), 111–177, 238 (1979); English translation: Math USSR Izvestija 14, 103–167 (1980)

  47. Satake, I.: On representations and compactifications of symmetric Riemannian spaces. Ann. Math. 71(2), 77–110 (1960)

  48. Schwarz J.H.: An SL(2,\({\mathbb{Z}}\)) multiplet of type IIB superstrings. Phys. Lett. B 360, 13–18 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  49. Vafa C.: Evidence for F-theory. Nucl. Phys. B 469, 403–418 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  50. Vinberg, E.B.: On the algebra of Siegel modular forms of genus 2. Trans. Moscow Math. Soc. 2013, 1–13 (2013); Translation of: Trudy Moskovskogo Matematicheskogo Obshchestva, tom 74, vypusk 1 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Morrison.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malmendier, A., Morrison, D.R. K3 Surfaces, Modular Forms, and Non-Geometric Heterotic Compactifications. Lett Math Phys 105, 1085–1118 (2015). https://doi.org/10.1007/s11005-015-0773-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0773-y

Mathematics Subject Classification

Keywords

Navigation