Skip to main content
Log in

Lax Operator for Macdonald Symmetric Functions

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using the Lax operator formalism, we construct a family of pairwise commuting operators such that the Macdonald symmetric functions of infinitely many variables \({x_{1},x_{2},{\ldots}}\) and of two parameters q, t are their eigenfunctions. We express our operators in terms of the Hall–Littlewood symmetric functions of the variables \({x_{1},x_{2},{\ldots}}\) and of the parameter t corresponding to the partitions with one part only. Our expression is based on the notion of Baker–Akhiezer function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Awata H., Kanno H.: Macdonald operators and homological invariants of the colored Hopf link. J. Phys. A 44, 375201 (2011)

    Article  MathSciNet  Google Scholar 

  2. Awata H., Matsuo Y., Odake S., Shiraishi J.: Collective fields, Calogero-Sutherland model and generalized matrix models. Phys. Lett. B 347, 49–55 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Benjamin T.B.: Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29, 559–592 (1967)

    Article  MATH  ADS  Google Scholar 

  4. Bergeron F., Garsia A.M., Haiman M., Tesler G.: Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions. Methods Appl. Anal. 6, 363–420 (1999)

    MATH  MathSciNet  Google Scholar 

  5. Cai W., Jing N.: A generalization of Newton’s identity and Macdonald functions. J. Comb. Theory A 125, 342–356 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Feigin B., Hashizume K., Hoshino A., Shiraishi J., Yanagida S.: A commutative algebra on degenerate \({\mathbb{CP}^{1}}\) and Macdonald polynomials. J. Math. Phys. 50, 095215 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  7. Jing N.: Vertex operators and Hall–Littlewood symmetric functions. Adv. Math. 87, 226–248 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jing N.: Quantum Kac–Moody algebras and vertex representations. Lett. Math. Phys. 44, 261–271 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Macdonald, I.G.: (1995) Symmetric Functions and Hall Polynomials. Oxford University Press, Oxford

  10. Nazarov M.L., Sklyanin E.K.: Sekiguchi–Debiard operators at infinity. Commun. Math. Phys. 324, 831–849 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Nazarov M.L., Sklyanin E.K.: Macdonald operators at infinity. J. Algebraic Comb. 40, 23–44 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nazarov M.L., Sklyanin E.K.: Integrable hierarchy of the quantum Benjamin–Ono equation. Symmetry Integr. Geom. Methods Appl. 9, 078 (2013)

    MathSciNet  Google Scholar 

  13. Ono H.: Algebraic solitary waves in stratified fluids. J. Phys. Soc. Jpn. 39, 1082–1091 (1975)

    Article  ADS  Google Scholar 

  14. Schiffmann O., Vasserot E.: Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on \({\mathbb{A}^{2}}\). Publ. Math. IHÉS 118, 213–342 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schiffmann O., Vasserot E.: The elliptic Hall algebra and the equivariant K-theory of the Hilbert scheme of \({\mathbb{A}^{2}}\). Duke Math. J. 162, 279–366 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Shiraishi J.: A family of integral transformations and basic hypergeometric series. Commun. Math. Phys. 263, 439–460 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Shiraishi, J., Tutiya, Y.: Periodic ILW equation with discrete Laplacian. J. Phys. A 42, 404018 (2009)

  18. Shiraishi, J., Tutiya, Y.: Periodic Benjamin–Ono equation with discrete Laplacian and 2D-Toda hierarchy. In: New Trends in Quantum Integrable Systems, pp. 357–371. World Scientific (2010)

  19. Yamamoto T.: Higher order Macdonald operators with stability properties and their applications. Lett. Math. Phys. 77, 169–181 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, M., Sklyanin, E. Lax Operator for Macdonald Symmetric Functions. Lett Math Phys 105, 901–916 (2015). https://doi.org/10.1007/s11005-015-0770-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0770-1

Mathematics Subject Classification

Keywords

Navigation