Skip to main content
Log in

On the Joint Convexity of the Bregman Divergence of Matrices

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We characterize the functions for which the corresponding Bregman divergence is jointly convex on matrices. As an application of this characterization, we derive a sharp inequality for the quantum Tsallis entropy of a tripartite state, which can be considered as a generalization of the strong subadditivity of the von Neumann entropy. (In general, the strong subadditivity of the Tsallis entropy fails for quantum states, but it holds for classical states.) Furthermore, we show that the joint convexity of the Bregman divergence does not imply the monotonicity under stochastic maps, but every monotone Bregman divergence is jointly convex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél J., Daróczy Z.: On measures of information and their characterizations. Academic Press, San Diego (1975)

    MATH  Google Scholar 

  2. Ando T., Hiai F.: Operator log-convex functions and operator means. Mathematische Annalen. 350(3), 611–630 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Banerjee, A., et al.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)

  4. Bauschke, H., Borwein, J.: Joint and separate convexity of the Bregman distance. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently parallel algorithms in feasibility and optimization and their applications (Haifa 2000), pp. 23–36. Elsevier (2001)

  5. Besenyei Á., Petz D.: Partial subadditivity of entropies. Linear Algebra Appl. 439, 3297–3305 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bhatia R.: Matrix analysis. Springer, New York (1996)

    MATH  Google Scholar 

  7. Bregman L.M.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967)

    Article  Google Scholar 

  8. Carlen, E.: Trace Inequalities and quantum entropy: an introductory course. Contemp. Math. 529, 73–140 (2010)

  9. Chen R.Y., Tropp J.A.: Subadditivity of matrix φ-entropy and concentration of random matrices. Electron. J. Probab. 19, 1–30 (2014)

    Article  MathSciNet  Google Scholar 

  10. Daróczi Z.: General information functions. Inf. Control. 16, 36–51 (1970)

    Article  Google Scholar 

  11. Furuichi S., Yanagi K., Kuriyama K.: Fundamental properties of Tsallis relative entropy. J. Math. Phys. 45, 4868–4877 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Furuichi S.: Information theoretical properties of Tsallis entropies. J. Math. Phys. 47, 023302 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hansen, F.: Extensions of Lieb’s concavity theorem. J. Stat. Phys. 124, 87–101 (2006)

  14. Hansen F.: Trace functions as Laplace transforms. J. Math. Phys. 47, 043504 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. Hansen, F., Zhang, Z.: Characterization of matrix entropies. (2014). arXiv:1402.2118v2

  16. Hiai, F., Petz, D.: Introduction to matrix analysis and applications. Hindustan Book Agency and Springer Verlag (2014)

  17. Itakura, F., Saito, S.: Analysis synthesis telephony based on the maximum likelihood method, In: 6th Int. Congr. Acoustics, Tokyo, pp. C-17–C-20 (1968)

  18. Kullback S., Leibler R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lesniewski A., Ruskai M.B.: Monotone riemannian metrics and relative entropy on non-commutative probability spaces. J. Math. Phys. 40, 5702–5724 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Lieb E.H., Ruskai M.B.: Some operator inequalities of the schwarz type. Adv. Math. 12, 269–273 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lewin M., Sabin J.: A family of monotone quantum relative entropies. Lett. Math. Phys. 104, 691–705 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Linblad G.: Expectations and entropy inequalities. Commun. Math. Phys. 39, 111–119 (1974)

    Article  ADS  Google Scholar 

  23. Mahalonobis, P.C.: On the generalized distance in statistics, Proc. Natl. Inst. Sci. 12, 49–55 (1936)

  24. Nielsen M., Petz D.: A simple proof of the strong subadditivity inequality. Quantum Inf. Comput. 6, 507–513 (2005)

    MathSciNet  Google Scholar 

  25. Petz D.: Bregman divergence as relative operator entropy. Acta Math. Hung. 116, 127–131 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Petz, D., Virosztek, D.: Some inequalities for quantum Tsallis entropy related to the strong subadditivity. Math. Inequal. Appl. 18(2), 555–568 (2015)

  27. Tropp J.A.: From joint convexity of quantum relative entropy to a concavity theorem of Lieb. Proc. Am. Math. Soc. 140, 1757–1760 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dániel Virosztek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitrik, J., Virosztek, D. On the Joint Convexity of the Bregman Divergence of Matrices. Lett Math Phys 105, 675–692 (2015). https://doi.org/10.1007/s11005-015-0757-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0757-y

Mathematics Subject Classification

Keywords

Navigation