Skip to main content
Log in

Hamiltonian Operators of Dubrovin-Novikov Type in 2D

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

First order Hamiltonian operators of differential-geometric type were introduced by Dubrovin and Novikov in 1983, and thoroughly investigated by Mokhov. In 2D, they are generated by a pair of compatible flat metrics \({g}\) and \({\tilde g}\) which satisfy a set of additional constraints coming from the skew-symmetry condition and the Jacobi identity. We demonstrate that these constraints are equivalent to the requirement that \({\tilde g}\) is a linear Killing tensor of g with zero Nijenhuis torsion. This allowed us to obtain a complete classification of n-component operators with n ≤ 4 (for n = 1, 2 this was done before). For 2D operators the Darboux theorem does not hold: the operator may not be reducible to constant coefficient form. All interesting (non-constant) examples correspond to the case when the flat pencil \({g, \tilde g}\) is not semisimple, that is, the affinor \({\tilde g g^{-1}}\) has non-trivial Jordan block structure. In the case of a direct sum of Jordan blocks with distinct eigenvalues, we obtain a complete classification of Hamiltonian operators for any number of components n, revealing a remarkable correspondence with the class of trivial Frobenius manifolds modelled on H *(CP n-1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolsinov, A.V., Matveev, V.S.: Local normal forms for geodesically equivalent pseudo-Riemannian metrics. (2013). arXiv:1301.2492

  2. Bolsinov A.V, Matveev V.S: Splitting and gluing lemmas for geodesically equivalent pseudo-Riemannian metrics. Trans. Am. Math. Soc. 363(8), 4081–4107 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Casati,M.: On deformations of multidimensional Poisson brackets of hydrodynamic type. Commun. Math. Phys. (2013). doi:10.1007/s00220-014-2219-2

  4. Degiovanni L, Magri F, Sciacca V: On deformation of Poisson manifolds of hydrodynamic type. Commun. Math. Phys. 253(1), 1–24 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Dubrovin, B.A., Novikov S.P.: Poisson brackets of hydrodynamic type. Dokl. Akad. Nauk SSSR 279(2):294–297 (1984)

  6. Dubrovin B.A.: Geometry of 2D topological field theories. Integr. Syst. Quantum Gr. (Montecatini Terme, 1993) Lect. Notes Math. 1620, 120–348 (1996)

    Article  MathSciNet  Google Scholar 

  7. Dubrovin, B.A., Novikov, S.P.: Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Uspekhi Mat. Nauk 44(6), 35–124 (1989), English translation in Russ. Math. Surveys 44(6), 35–124 (1989)

  8. Dubrovin B.A, Novikov S.P: The Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogoliubov-Whitham averaging method. Akademiia Nauk SSSR, Doklady (ISSN 0002-3264) 270(4), 781–785 (1983)

    ADS  MathSciNet  Google Scholar 

  9. Dubrovin, B.A., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov–Witten invariants, SISSA Preprint 65/2001/FM. arXiv:0108160 [math.DG]

  10. Ferapontov E.V.: Compatible Poisson brackets of hydrodynamic type. J. Phys. A 34(11), 2377–2388 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  11. Ferapontov E.V, Khusnutdinova K.R: On integrability of (2+1)-dimensional quasilinear systems. Commun. Math. Phys. 248, 187–206 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Ferapontov E.V, Moro A, Sokolov V. V: Hamiltonian systems of hydrodynamic type in 2+1 dimensions. Commun. Math. Phys. 285(1), 31–65 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Ferapontov E.V, Odesskii A.V, Stoilov N.M: Classification of integrable two-component Hamiltonian systems of hydrodynamic type in 2+1 dimensions. J. Math. Phys. 52, 073505 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. Getzler E.: A Darboux theorem for Hamiltonian operators in the formal calculus of variations. Duke Math. J. 111, 535–560 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lancaster P, Rodman L: Canonical forms for hermitian matrix pairs under strict equivalence and congruence. SIAM Rev. 47, 407–443 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Mokhov O.I.: Poisson brackets of Dubrovin-Novikov type (DN-brackets). Funct. Anal. Appl. 22(4), 336–338 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mokhov O.I.: Classification of non-singular multi-dimensional Dubrovin-Novikov brackets. Funct. Anal. Appl. 42(1), 33–44 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mokhov O.I.: Compatible and almost compatible metrics. Russ. Math. Surv. 55(4), 819–821 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mokhov O.I.: Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems. Russ. Math. Surv. 53(3), 515–622 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mokhov O.I.: Compatible flat metrics. J. Appl. Math. 2(7), 337–370 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pavlov M.V.: Preservation of the form of Hamiltonian structures under linear changes of the independent variables. Math. Notes 57(5-6), 489–495 (1995)

    Article  MathSciNet  Google Scholar 

  22. Tsarev S.P.: Geometry of Hamiltonian systems of hydrodynamic type. Generalized hodograph method. Izvestija AN USSR Math. 54(5), 1048–1068 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Lorenzoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferapontov, E.V., Lorenzoni, P. & Savoldi, A. Hamiltonian Operators of Dubrovin-Novikov Type in 2D. Lett Math Phys 105, 341–377 (2015). https://doi.org/10.1007/s11005-014-0738-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-014-0738-6

Mathematics Subject Classification

Keywords

Navigation