Skip to main content
Log in

Superintegrability in Two Dimensions and the Racah–Wilson Algebra

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The analysis of the most general second-order superintegrable system in two dimensions: the generic 3-parameter model on the 2-sphere is cast in the framework of the Racah problem for the \({\mathfrak{su}(1,1)}\) algebra. The Hamiltonian of the 3-parameter system and the generators of its quadratic symmetry algebra are seen to correspond to the total and intermediate Casimir operators of the combination of three \({\mathfrak{su}(1,1)}\) algebras, respectively. The construction makes explicit the isomorphism between the Racah–Wilson algebra, which is the fundamental algebraic structure behind the Racah problem for \({\mathfrak{su}(1, 1)}\), and the invariance algebra of the generic 3-parameter system. It also provides an explanation for the occurrence of the Racah polynomials as overlap coefficients in this context. The irreducible representations of the Racah–Wilson algebra are reviewed as well as their connection with the Askey scheme of classical orthogonal polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chihara T.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  2. Daskaloyannis C., Ypsilantis K.: Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two dimensional manifold. J. Math. Phys. 47, 042904 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. Fris I., Mandrosov V., Smorodinsky Y.A., Ulhìr M., Winternitz P.: On higher symmetries in quantum mechanics. Phys. Lett. 16, 354–356 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gal’bert O.F., Granovskii Y., Zhedanov A.: Dynamical symmetry of anisotropic singular oscillator. Phys. Lett. A 153, 177–180 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. Gao, S., Wang, Y., Hou, B.: The classification of Leonard triples of Racah type. Linear Algebra Appl. 439(7), 1834–1861 (2013)

  6. Gasper G., Rahman M.: Basic hypergeometric series, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  7. Genest, V.X., Vinet, L., Zhedanov, A.: The Racah algebra and superintegrable models. arXiv:1312.3874

  8. Granovskii Y., Zhedanov A.: Nature of the symmetry group of the 6j-symbol. Sov. Phys. JETP 67, 1982–1985 (1988)

    MathSciNet  Google Scholar 

  9. Granovskii, Y., Zhedanov, A.: Exactly solved problems and their quadratic algebras (in Russian). preprint DonFTI, 89-7 (1989)

  10. Granovskii Y., Zhedanov A.: Quadratic algebra as a ‘hidden’ symmetry of the Hartmann potential. J. Phys. A Math. Gen. 24, 3887–3894 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  11. Granovskii Y., Zhedanov A., Lutsenko I.: Mutual integrability, quadratic algebras and dynamical symmetry. Ann. Phys. 217, 1–20 (1992)

    Article  ADS  Google Scholar 

  12. Granovskii Y., Zhedanov A., Lutsenko I.: Quadratic algebras and dynamics in curved spaces I. Oscil. Theor. Math. Phys. 91, 474–480 (1992)

    Article  MathSciNet  Google Scholar 

  13. Granovskii Y., Zhedanov A., Lutsenko I.: Quadratic algebras and dynamics in curved spaces II. The Kepler problem. Theor. Math. Phys. 91, 604–612 (1992)

    Article  MathSciNet  Google Scholar 

  14. Groenevelt W.: Wilson function transforms related to Racah coefficients. Acta Applicandae Mathematicae 91, 133–191 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Groenevelt, W., Koelink, E., Rosengren, H.: Continuous Hahn functions as Clebsch–Gordan coefficients. In: Developments in Mathematics, pp. 221–284. Springer, Berlin (2005)

  16. Ismail, M.E.H., Koelink, E.: Spectral properties of operators using tridiagonalization. Anal. Appl. 10, 327–343 (2012). doi:10.1142/S0219530512500157

  17. Kalnins E.G., Miller W., Pogosyan G.: Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions. J. Math. Phys. 37, 6439 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Kalnins E.G., Miller W., Pogosyan G.: Completeness of multiseparable superintegrability in E 2, C . J. Phys. A Math. Gen. 33, 4105 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Kalnins E.G., Miller W., Pogosyan G.: Completeness of multiseparable superintegrability on the complex 2-sphere. J. Phys. A Math. Gen. 33, 6791 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Kalnins E.G., Miller W., Post S.: Wilson polynomials and the generic superintegrable system on the 2-sphere. J. Phys. A Math. Theor. 40, 11525 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Kalnins E.G., Miller W., Post S.: Two-variable wilson polynomials and the generic superintegrable system on the 3-sphere. SIGMA 7, 51–76 (2011)

    MathSciNet  Google Scholar 

  22. Kalnins, E.G., Miller, W., Post, S.: Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials. ArXiv:1212.4766 (2013)

  23. Koekoek R., Lesky P.A., Swarttouw R.F.: Hypergeometric Orthogonal Polynomials and Their q-Analogues, 1st edn. Springer, Berlin (2010)

    Book  Google Scholar 

  24. Kuznetsov V.B.: Quadrics on Riemannian spaces of constant curvature. Separation of variables and connection with the Gaudin magnet. Theor. Math. Phys. 91, 385–404 (1992)

    Article  MATH  Google Scholar 

  25. Létourneau P., Vinet L.: Superintegrable systems: polynomial algebras and quasi-exactly solvable Hamiltonians. Ann. Phys. 243, 144–168 (1995)

    Article  ADS  MATH  Google Scholar 

  26. Olver P.J.: Applications of Lie groups to differential equations. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  27. Tempesta, P., Winternitz, P.,Miller, W., Pogosyan, G. (eds.): Superintegrability in Classical and Quantum Systems, vol. 37. AMS, USA (2005)

  28. Terwilliger P.: Two linear transformations each tridiagonal with respect to an eigenbasis of the other. Linear Algebra Appl. 330, 149–203 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. van der Waerden B.L.: Algebra. Springer, Berlin (1993)

    Google Scholar 

  30. Vilenkin N.J., Klimyk A.U.: Representations of Lie groups and Special Functions. Kluwer Academic Publishers, Dordrecht (1991)

    Book  Google Scholar 

  31. Winternitz P., Smorodinsky Y.A., Ulhìr M., Fris I.: Symmetry groups in classical and quantum mechanics. Sov. J. Nucl. Phys. 4, 444–450 (1967)

    Google Scholar 

  32. Zhedanov A.: Hidden symmetry of Askey–Wilson polynomials. Theor. Math. Phys. 89, 1146–1157 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zhedanov A.: Hidden symmetry algebra and overlap coefficients for two ring-shaped potentials. J. Phys. A Math. Gen. 26, 4633 (1993)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Vinet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genest, V.X., Vinet, L. & Zhedanov, A. Superintegrability in Two Dimensions and the Racah–Wilson Algebra. Lett Math Phys 104, 931–952 (2014). https://doi.org/10.1007/s11005-014-0697-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-014-0697-y

Mathematics Subject Classification

Keywords

Navigation