Skip to main content
Log in

On the Mass Concentration for Bose–Einstein Condensates with Attractive Interactions

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider two-dimensional Bose–Einstein condensates with attractive interaction, described by the Gross–Pitaevskii functional. Minimizers of this functional exist only if the interaction strength a satisfies \({a < a^* = \|Q\|_2^2}\), where Q is the unique positive radial solution of \({\Delta u - u + u^3 = 0}\) in \({\mathbb{R}^2}\). We present a detailed analysis of the behavior of minimizers as a approaches a*, where all the mass concentrates at a global minimum of the trapping potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams R.A., Fournier J.J.F.: Sobolev spaces, 2nd edn. Academic Press, New York (2003)

    Google Scholar 

  2. Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  ADS  Google Scholar 

  3. Aschbacher W.H., Fröhlich J., Graf G.M., Schnee K., Troyer M.: Symmetry breaking regime in the nonlinear Hartree equation. J. Math. Phys. 43, 3879–3891 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bloch I., Dalibard J., Zwerger W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  5. Bradley, C.C., Sackett, C.A., Tollett, J.J., Hulet, R.G.: Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687 (1995) (Erratum in: Phys. Rev. Lett. 79, 1170 (1997))

    Google Scholar 

  6. Bradley C.C., Sackett C.A., Hulet R.G.: Bose–Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985 (1997)

    Article  ADS  Google Scholar 

  7. Byeon J., Wang Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10. Courant Institute of Mathematical Science/AMS, New York (2003)

  9. Cooper N.R.: Rapidly rotating atomic gases. Adv. Phys. 57, 539–616 (2008)

    Article  ADS  Google Scholar 

  10. Dalfovo F., Giorgini S., Pitaevskii L.P., Stringari S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  ADS  Google Scholar 

  11. Davis K.B., Mewes M.O., Andrews M.R., van Druten N.J., Durfee D.S., Kurn D.M., Ketterle W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  ADS  Google Scholar 

  12. Fetter A.L.: Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81, 647 (2009)

    Article  ADS  Google Scholar 

  13. Floer A., Weinstein A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gidas B., Ni W.M., Nirenberg L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}^n}\), Mathematical analysis and applications Part A, Adv. in Math. Suppl. Stud., vol. 7, pp. 369–402. Academic Press, New York (1981)

    Google Scholar 

  15. Gross E.P.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–466 (1961)

    Article  MATH  Google Scholar 

  16. Gross E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4, 195–207 (1963)

    Article  ADS  Google Scholar 

  17. Guo, Y.J., Zeng, X.Y., Zhou, H.S.: Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials (2013, preprint)

  18. Huepe C., Metens S., Dewel G., Borckmans P., Brachet M.E.: Decay rates in attractive Bose–Einstein condensates. Phys. Rev. Lett. 82, 1616–1619 (1999)

    Article  ADS  Google Scholar 

  19. Jackson R.K., Weinstein M.I.: Geometric analysis of bifurcation and symmetry breaking in a Gross–Pitaevskii equation. J. Stat. Phys. 116, 881–905 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Kagan Y., Muryshev A.E., Shlyapnikov G.V.: Collapse and Bose–Einstein condensation in a trapped Bose gas with negative scattering length. Phys. Rev. Lett. 81, 933–937 (1998)

    Article  ADS  Google Scholar 

  21. Kirr E.W., Kevrekidis P.G., Shlizerman E., Weinstein M.I.: Symmetry-breaking bifurcation in nonlinear Schrödinger/Gross–Pitaevskii equations. SIAM J. Math. Anal. 40, 566–604 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kirr E.W., Kevrekidis P.G., Pelinovsky D.E.: Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials. Commun. Math. Phys. 308(3), 795–844 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Kwong M.K.: Uniqueness of positive solutions of \({\Delta u - u + u ^p = 0}\) in \({\mathbb{R}^N}\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Levine H.A.: An estimate for the best constant in a Sobolev inequality involving three integral norms. Ann. Math. Pura Appl. 124, 181–197 (1980)

    Article  MATH  Google Scholar 

  25. Li Y., Ni W.M.: Radial symmetry of positive solutions of nonlinear elliptic equations in \({\mathbb{R}^n}\). Commun. Partial Differ. Equ. 18, 1043–1054 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lieb, E.H., Loss, M.: Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14. Amer. Math. Soc., Providence (2001)

  27. Lieb E.H., Seiringer R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409-1–4 (2002)

    Article  ADS  Google Scholar 

  28. Lieb E.H., Seiringer R., Solovej J.P., Yngvason J.: The mathematics of the Bose gas and its condensation, Oberwolfach Seminars 34. Birkhäuser Verlag, Basel (2005)

    Google Scholar 

  29. Lieb E.H., Seiringer R., Yngvason J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602-1–13 (2000)

    Article  ADS  Google Scholar 

  30. Lieb E.H., Seiringer R., Yngvason J.: A rigorous derivation of the Gross–Pitaevskii energy functional for a two-dimensional Bose gas. Commun. Math. Phys. 224, 17–31 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Maeda M.: On the symmetry of the ground states of nonlinear Schrödinger equation with potential. Adv. Nonlinear Stud. 10, 895–925 (2010)

    MATH  MathSciNet  Google Scholar 

  32. McLeod K., Serrin J.: Uniqueness of positive radial solutions of \({\Delta u + f(u) =0}\) in \({\mathbb{R}^n}\). Arch. Ration. Mech. Anal. 99, 115–145 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  33. Oh Y.-G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131, 223–253 (1990)

    Article  ADS  MATH  Google Scholar 

  34. Pitaevskii L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961)

    MathSciNet  Google Scholar 

  35. Rose H.A., Weinstein M.I.: On the bound states of the nonlinear Schrödinger equation with a linear potential. Phys. D 30, 207–218 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  36. Sackett C.A., Stoof H.T.C., Hulet R.G.: Growth and collapse of a Bose–Einstein condensate with attractive interactions. Phys. Rev. Lett. 80, 2031 (1998)

    Article  ADS  Google Scholar 

  37. Wang X.F.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    Article  ADS  MATH  Google Scholar 

  38. Weinstein M.I.: Nonlinear Schrödinger equations and sharp interpolations estimates. Commun. Math. Phys. 87, 567–576 (1983)

    Article  ADS  MATH  Google Scholar 

  39. Yukalov V.I., Yukalova E.P.: Optimal trap shape for a Bose gas with attractive interactions. Phys. Rev. A 72, 063611 (2005)

    Article  ADS  Google Scholar 

  40. Zhang J.: Stability of attractive Bose–Einstein condensates. J. Stat. Phys. 101, 731–746 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Seiringer.

Additional information

Dedicated to Nassif Ghoussoub on the occasion of his 60th birthday

Y. Guo is partially supported by NSFC Grants 11241003 and 11322104.

R. Seiringer is partially supported by the Natural Science and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Seiringer, R. On the Mass Concentration for Bose–Einstein Condensates with Attractive Interactions. Lett Math Phys 104, 141–156 (2014). https://doi.org/10.1007/s11005-013-0667-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-013-0667-9

Mathematics Subject Classification (2010)

Keywords

Navigation