Skip to main content

BPS Invariants of Semi-Stable Sheaves on Rational Surfaces

Abstract

Bogomolnyi–Prasad–Sommerfield (BPS) invariants are computed, capturing topological invariants of moduli spaces of semi-stable sheaves on rational surfaces. For a suitable stability condition, it is proposed that the generating function of BPS invariants of a Hirzebruch surface \({\Sigma_\ell}\) takes the form of a product formula. BPS invariants for other stability conditions and other rational surfaces are obtained using Harder–Narasimhan filtrations and the blow-up formula. Explicit expressions are given for rank ≤  3 sheaves on \({\Sigma_\ell}\) and the projective plane \({\mathbb{P}^2}\). The applied techniques can be applied iteratively to compute invariants for higher rank.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Atiyah M.F., Bott R. (1982) The Yang–Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. A308: 523–615

    MathSciNet  ADS  Google Scholar 

  2. 2

    Beauville, A.: Sur la cohomologie de certaines espaces de modules de fibrés vectoriels. Geometry and Analysis, (Bombay, 1992), Tata Inst. Fund. Res. 37–40 (1995). arXiv:math.AG/9202024

  3. 3

    Bringmann, K., Manschot, J.: From sheaves on \({\mathbb{P}^2}\) to a generalization of the Rademacher expansion. Am. J. Math. arXiv:1006.0915 [math.NT]

  4. 4

    Chuang, W.-Y., Diaconescu, D.-E., Manschot, J., Moore, G.W., Soibelman, Y.: Geometric engineering of (framed) BPS states. arXiv:1301.3065 [hep-th]

  5. 5

    Desale U.V., Ramanan S. (1975) Poincaré polynomials of the variety of stable bundles. Math. Ann. 216: 233–244

    MathSciNet  MATH  Article  Google Scholar 

  6. 6

    Diaconescu, E., Moore, G.W.: Crossing the wall: branes versus bundles. Adv. Theor. Math. Phys. 14 (2010). arXiv:0706.3193 [hep-th]

  7. 7

    Earl, R., Kirwan, F.: The Hodge numbers of the moduli spaces of vector bundles over a Riemann surface. Q. J. Math. 51, 465–484 (2000). arXiv:math/0012260

    Google Scholar 

  8. 8

    Friedman R. (1998) Algebraic Surfaces and Holomorphic Vector Bundles. Springer, Berlin

    MATH  Book  Google Scholar 

  9. 9

    Gaiotto, D., Moore, G.W., Neitzke, A.: Framed BPS states. arXiv:1006.0146 [hep-th]

  10. 10

    Göttsche L. (1990) The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math. Ann. 286: 193

    MathSciNet  MATH  Article  Google Scholar 

  11. 11

    Göttsche, L., Zagier, D.: Jacobi forms and the structure of Donaldson invariants for 4-manifolds with b + = 1. Sel. Math. New Ser. 4, 69 (1998). arXiv:alg-geom/9612020

    Google Scholar 

  12. 12

    Göttsche, L.: Theta functions and Hodge numbers of moduli spaces of sheaves on rational surfaces. Commun. Math. Phys. 206, 105 (1999). arXiv:math.AG/9808007

    Google Scholar 

  13. 13

    Harder G., Narasimhan M.S. (1975) On the cohomology groups of moduli spaces of vector bundles on curves. Math. Ann. 212: 215–248

    MathSciNet  MATH  Article  Google Scholar 

  14. 14

    Huybrechts D., Lehn M. (1996) The Geometry of Moduli Spaces of Sheaves. Cambridge University Press, London

    Google Scholar 

  15. 15

    Joyce, D.: Configurations in Abelian categories. IV. Invariants and changing stability conditions. Adv. Math. 217, 125–204 (2008). arXiv:math.AG/0410268

    Google Scholar 

  16. 16

    Joyce, D.: Motivic invariants of Artin stacks and ‘stack functions’. Q. J. Math. 58, 345–392 (2007). arXiv:math.AG/0509722

    Google Scholar 

  17. 17

    Joyce, D., Song, Y.: A theory of generalized Donaldson–Thomas invariants. Mem. AMS 217 (2012). arXiv:0810.5645 [math.AG]

  18. 18

    Katz, S.H., Klemm, A., Vafa, C.: Geometric engineering of quantum field theories. Nucl. Phys. B 497, 173 (1997). hep-th/9609239

    Google Scholar 

  19. 19

    Kim, H., Park, J., Wang, Z., Yi, P.: Ab initio wall-Crossing. JHEP 1109, 079 (2011). arXiv:1107.0723 [hep-th]

  20. 20

    Kirwan, F.: On the homology of compactifications of moduli spaces of vector bundles over Riemann surfaces. Proc. Lond. Math. Soc. 53, 237–266 (1986); Corrigendum, Proc. Lond. Math. Soc. 65, 474 (1992)

  21. 21

    Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. arXiv:0811.2435 [math.AG]

  22. 22

    Kool, M.: Euler characteristics of moduli spaces of torsion free sheaves on toric surfaces. arXiv:0906.3393 [math.AG]

  23. 23

    Li, W.-P., Qin, Z.: On blowup formulae for the S-duality conjecture of Vafa and Witten. Invent. Math. 136, 451-482 (1999). arXiv:math.AG/9808007

    Google Scholar 

  24. 24

    Manschot, J.: Stability and duality in \({\mathcal{N} = 2}\) supergravity. Commun. Math. Phys. 299, 651–676 (2010). arXiv:0906.1767 [hep-th]

    Google Scholar 

  25. 25

    Manschot, J.: Wall-crossing of D4-branes using flow trees. Adv. Theor. Math. Phys. 15, 1–42 (2011). arXiv:1003.1570 [hep-th]

  26. 26

    Manschot, J.: The Betti numbers of the moduli space of stable sheaves of rank 3 on \({\mathbb{P}^2}\). Lett. Math. Phys. 98, 65–78 (2011). arXiv:1009.1775 [math-ph]

    Google Scholar 

  27. 27

    Manschot, J., Pioline, B., Sen, A.: Wall crossing from Boltzmann black hole halos. JHEP 1107, 059 (2011). arXiv:1011.1258 [hep-th]

  28. 28

    Manschot, J.: BPS invariants of \({\mathcal{N} = 4}\) gauge theory on a surface. Commun. Number Theory Phys. 6, 497–516 (2012). arXiv:1103.0012 [math-ph]

  29. 29

    Nakajima H., Yoshioka K. (2010) Instanton counting and Donaldson invariants. Sugaku Expo. 23: 2

    MathSciNet  Google Scholar 

  30. 30

    Reineke M. (2003) The Harder–Narasimhan system in quantum groups and cohomology of quiver moduli. Invent. Math. 152: 349

    MathSciNet  ADS  MATH  Article  Google Scholar 

  31. 31

    Vafa, C., Witten, E.: A strong coupling test of S duality. Nucl. Phys. B 431, 3 (1994). arXiv:hep-th/9408074

    Google Scholar 

  32. 32

    Weist, T.: Torus fixed points of moduli spaces of stable bundles of rank three. J. Pure Appl. Algebra 215 (2011). arXiv:0903.0732 [math. AG]

  33. 33

    Yoshioka K. (1994) The Betti numbers of the moduli space of stable sheaves of rank 2 on \({\mathbb{P}^2}\). J. Reine Angew. Math. 453: 193–220

    MathSciNet  MATH  Google Scholar 

  34. 34

    Yoshioka K. (1995) The Betti numbers of the moduli space of stable sheaves of rank 2 on a ruled surface. Math. Ann. 302: 519–540

    MathSciNet  MATH  Article  Google Scholar 

  35. 35

    Yoshioka, K.: The chamber structure of polarizations and the moduli of stable sheaves on a ruled surface. Int. J. Math. 7, 411–431 (1996). arXiv:alg-geom/9409008

    Google Scholar 

  36. 36

    Yoshioka, K.: Euler characteristics of SU(2) instanton moduli spaces on rational elliptic surfaces. Commun. Math. Phys. 205, 501 (1999). arXiv:math/9805003

    Google Scholar 

  37. 37

    Zagier, D.: Elementary aspects of the Verlinde formula and of the Harder–Narasimhan–Atiyah–Bott formula. In: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Mathematics Conference Proceedings, vol. 9, pp. 445–462. Bar-Ilan Univ., Ramat Gan (1996)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan Manschot.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manschot, J. BPS Invariants of Semi-Stable Sheaves on Rational Surfaces. Lett Math Phys 103, 895–918 (2013). https://doi.org/10.1007/s11005-013-0624-7

Download citation

Mathematics Subject Classification (2000)

  • 14J60
  • 14D21
  • 14N35

Keywords

  • sheaves
  • moduli spaces